

STS Cruise Report 11 December 2011

Data Submitted by:

Oceanographic Data Facility and Research Technicians Shipboard Technical Support/Scripps Institution of Oceanography La Jolla, CA 92093-0214

Summary

A hydrographic survey consisting of rosette/CTD sections and Bio-Optical casts in the mid-latitude eastern Atlantic Ocean was carried out during November-December 2011. The R/V Knorr departed Woods Hole, MA on 6 November 2011. The cruise ended in Praia, Cabo Verde on 11 December 2011.

Introduction

A sea-going science team gathered from 14 oceanographic institutions participated on the cruise. The programs and PIs, and the shipboard science team and their responsibilities, are listed below.

Principal Programs of GEOTRACES 2011

ODU/15L GoFlo CTDO/Rosette							
Program	Affiliation*	Princ. Investigator	email				
CTD/Rosette Data NanoMolar Nutrients As Sb Se AP	ODU	Gregory Cutter	gcutter@odu.edu				
Salinity Nutrients	UCSD/SIO	James H. Swift	jswift@ucsd.edu				
Mercury	WHOI	Carl Lamborg	clamborg@whoi.edu				
Fe Al Mn Zn	UH	Chris Measures	chrism@soest.hawaii.edu				
Mn V Ga REE	USM	Alan Shiller	alan.shiller@usm.edu				
Pb, Pb Isotopes Cr, Cr Isotopes Polarographic Zn Zn Speciation	MIT	Ed Boyle	eaboyle@mit.edu				
Fe Colloids	MIT RSMAS	Ed Boyle Jingfeng Wu	eaboyle@mit.edu jwu@rsmas.miami.edu				
Cobalt	WHOI	Mak Saito	msaito@whoi.edu				
	WHOI	Abigail Noble	anoble@whoi.edu				
Fe Fe(II)	ODU	Peter Sedwick	psedwick@odu.edu				
Fe Speciation L1/K1 L2/K2	BIOS	Kristen Buck	kristen.buck@bios.edu				
Dissolved Trace Metals: Al Cd Co Cu Ga Fe Pb Mn Ni Sc Ag Ti Zn	UCSC	Ken W. Bruland	bruland@ucsc.edu				
Particulate/Cellular Trace Metals: Al P Mn Fe Co Ni Cu Zn Cd Element Analysis of Phytoplankton	BLOS	Benjamin Twining	btwining@bigelow.org				
Dissolved/Particulate Trace Metals: Mn Fe Co Ni Cu Zn Cd Pb	FSU	William Landing	wlanding@fsu.edu				
Dissolved Trace Metals: Fe Al Zn Cd Mn	RSMAS	Jingfeng Wu	jwu@rsmas.miami.edu				
Copper, Copper Speciation	USC	James Moffett	jmoffett@usc.edu				
d ⁵⁶ Fe d ⁵⁷ Fe	SC	Seth John	sjohn@geol.sc.edu				
Osmium	DART	Mukul Sharma	mukul.sharma@dartmouth.edu				
Titanium	BU/URI	Rick Murray	rickm@bu.edu				
Zirconium Hafnium	UBC UBC	Jason McAlister Kristin Orians	jmcalist@eos.ubc.ca korians@eos.ubc.ca				

* Affiliation abbreviations listed on page 5

SIOR/30L Niskin CTD/Rosette							
Program	Affiliation*	Princ. Investigator	email				
CTD/Rosette Data diss.O ₂ Salinity Nutrients On-Board Data Website Data Management	UCSD/SIO	James H. Swift	jswift@ucsd.edu				
CFCs SF ₆	LDEO	William Smethie	bsmeth@ldeo.columbia.edu				
³ He/ ⁴ He diss.He ³ H, Ne	WHOI	William Jenkins	wjenkins@whoi.edu				
¹⁴ C ¹³ C	UW WHOI/NOSAMS	Paul Quay William Jenkins	pdquay@u.washington.edu wjenkins@whoi.edu				
DIC Total Alkalinity	RSMAS BIOS	Frank Millero Nick Bates	fmillero@rsmas.miami.edu nick.bates@bios.edu				
¹⁸ O – H ₂ O	INETI UChicago	Antje Voelker Albert Colman	antje.voelker@ineti.pt asc25@uchicago.edu				
HPLC Pigments	NASA	Stanford Hooker	Stanford.B.Hooker@nasa.gov				
²³⁴ Th ²³⁸ U	WHOI	Ken Buesseler	kbuesseler@whoi.edu				
₂₂₆ Ra	WHOI SC	Matthew Charette Willard S. Moore	mcharette@whoi.edu moore@geol.sc.edu				
DNA comp. of pico-cyanobacteria	MIT	Penny Chisholm	chisholm@mit.edu				
DNA comp. of N-fixing organisms	IFM-G	Julie LaRoche	jlaroche@ifm-geomar.de				
$d^{15}N - NO_3$ $d^{18}O - NO_3$	WHOI PU	Karen L. Casciotti Daniel M. Sigman	kcasciotti@whoi.edu sigman@princeton.edu				
Thiols	WHOI	Carl Lamborg	clamborg@whoi.edu				
Barium	OSU	Kelly Falkner	kfalkner@coas.oregonstate.edu				
Pa ²³² Th ²³⁰ Th ²³² Th Colloids	ldeo UMN URI WHOI	Robert F. Anderson Larry Edwards Brad Moran Laura Robinson	boba@ldeo.columbia,edu edwar001@umn.edu moran@gso.uri.edu lrobinson@whoi.edu				
Neodymium	LDEO SC	Steven Goldstein Howie Sher	steveg@ldeo.columbia.edu hscher@geol.sc.edu				
REE (Rare Earth Elems.)	UH	Katharina Pahnke	kpahnke@hawaii.edu				
²¹⁰ Po ²¹⁰ Pb	UDEL	Thomas M. Church	tchurch@udel.edu				
Si Isotopes	UCSB	Mark A. Brzezinski	mark.brzezinski@lifesci.ucsb.edu				
Plutonium	LDEO	Bob Anderson	boba@ldeo.columbia.edu				
170-02 OxyArgon	UW	Paul D. Quay	pdquay@uw.edu				
O17Delta	HUJ	Boaz Luz	Boaz.Luz@huji.ac.il				

* Affiliation abbreviations listed on page 5

McL-Prof McLane in situ Pump Profiles								
Program	Affiliation*	Princ. Investigator	email					
SBE19 CTD Data ²³⁴ Th ²³⁸ Th	WHOI	Ken Buesseler	kbuesseler@whoi.edu					
Radium Isotopes	WHOI	Matthew Charette	mcharette@whoi.edu					
Radium isotopes	SC	Willard S. Moore	moore@geol.sc.edu					
	LDEO	Robert F. Anderson	boba@ldeo.columbia.edu					
Particulate The Pa	URI	Brad Moran	moran@gso.uri.edu					
	UMN	Larry Edwards	edwar001@umn.edu					
	WHOI	Laura Robinson	lrobinson@whoi.edu					
Particulate/Cellular Trace Metals: Al P Mn Fe Co Ni Cu Zn Cd	itals: BLOS Benjamin Twining btwining@bigelow.c		btwining@bigelow.org					
Particulate Trace Metals:								
Fe Aa Mn Cd Cu	WHOI	Phoebe J. Lam	pjlam@whoi.edu					
Zn POC $CaCO_3$ bSi								
Particulate ²¹⁰ Pb ²¹⁰ Po	WSU	Mark Baskaran	ag4231@wayne.edu					

* Affiliation abbreviations listed on page 5

Towed Surface Fish							
Program	Affiliation*	* Princ. Investigator email					
Trace Metals: Al Sc Ti Mn Fe Co Ni Cu Zn Ga Ag Cd Pb	UCSC	Ken W. Bruland	bruland@ucsc.edu				
Particulate/Cellular Trace Metals: Al P Mn Fe Co Ni Cu Zn Cd Element Analysis of Phytoplankton	BLOS	Benjamin Twining	btwining@bigelow.org				
NanoMolar Nutrients As AP Se	ODU	Gregory Cutter	gcutter@odu.edu				
Dissolved/Particulate Trace Metals: Mn Fe Co Ni Cu Zn Cd Pb	FSU	William Landing	wlanding@fsu.edu				
Aerosol-derived Dissolved Fe	UAF	Ana M. Aguilar-Islas	amaguilarislas@alaska.edu				
Aerosol Leaching Studies Trace Metal Conc.: Mn V Ga REE	USM	Alan Shiller	alan.shiller@usm.edu				
Large Volume Particles	WHOI	Phoebe J. Lam	pjlam@whoi.edu				
Dissolved Zn	MIT	Ed Boyle	eaboyle@mit.edu				
Fe Fe(II)	ODU	Peter Sedwick	psedwick@odu.edu				
Mercury	WHOI	Carl Lamborg	clamborg@whoi.edu				

* Affiliation abbreviations listed on page 5

Miscellaneous Sampling								
Program	Affiliation*	Princ. Investigator	email					
Aerosols (3 systems) Rain Sampler - Mercury	FSU	William Landing	wlanding@fsu.edu					
Aerosol Sampler - Dissolved Fe	UAF	Ana M. Aguilar-Islas	amaguilarislas@alaska.edu					
Ship's Underway Sensors	WHOI	Knorr SSSG Technicians	sssg@knorr.whoi.edu					

* Affiliation abbreviations listed on page 5

Shipboard Scientific Personnel on GEOTRACES 2011

Name	Affiliation	Shipboard Duties	Shore Email
Edward A. Boyle	MIT	Chief Scientist	eaboyle@mit.edu
Gregory Cutter	ODU	Co-Chief Scientist/ GoFlo Winch Ops	gcutter@odu.edu
Ana M. Aguilar-Islas Katlin Bowman Randelle Bundy Gonzalo Carrasco Rebaza Jessica Fitzsimmons	UAF WSU SIO/GRD MIT MIT	Aerosols Organic Hg GoFlo Sampling Labile Zn/GoFlo Sampling GoFlo Sampling	amaguilarislas@alaska.edu bowman.49@wright.edu rmbundy@ucsd.edu gcarrasc@mit.edu jessfitz@mit.edu
Brandon Gipson	ODU	Leg 1: NanoNutrients	bgipson@odu.edu
Eugene Gorman Chad Hammerschmidt Mariko Hatta	LDEO WSU UH	CFCs/SF6 Elemental/Total Hg Al/Fe/Mn/Zn	egorman@ldeo.columbia.edu chad.hammerschmidt@wright.edu mhatta@hawaii.edu
Christopher Hayes	LDEO	Th/Pa/Nd/REE/ 30L Niskin Sampling	cth@ldeo.columbia.edu
Jeremy Jacquot	USC	Cu/Cu Speciation/ Chisholm Sampling	jacquot@usc.edu
Mary Carol Johnson	SIO/STS	Data Manager/ ODF Data Processing	mcj@ucsd.edu
Brett Longworth	WHOI	3He/3H/DIC/13C Sampling SIOR CTD Console	blongworth@whoi.edu
Christopher Measures Melissa T. Miller Paul Morris Peter L. Morton	UH SIO/STS WHOI FSU	Al/Fe/Mn/Zn Nutrients/Deck McLane Pumps GoFlo Sampling	measures@hawaii.edu melissa-miller@ucsd.edu pmorris@whoi.edu pmorton@fsu.edu
Daniel Ohnemus	WHOI	McLane Pumps/Seacat Data	dan@whoi.edu
Stephanie Owens	WHOI	U/Ra/Th Sampling	sowens@whoi.edu
Katharina Pahnke	MPI-B/UH	Th/Pa/Nd/REE/ 30L Niskin Sampling	kpahnke@mpi-bremen.de
Robert Palomares III	SIO/STS	ET/Salinity/Deck	rpalomares@ucsd.edu
Melissa Phillips	ODU	Leg 1: Sb/As Leg 2: GT-C CTD Console	mmphilli@odu.edu
Steven Pike	WHOI	McLane Pumps	spike@whoi.edu
Christopher Powell	ODU	Leg 1 only: GT-C CTD Technician/Console	cmpowell@odu.edu
Sara Rauschenberg	BLOS	Phytoplankton Elements Particulate TM	srauschenberg@bigelow.org
Sylvain Rigaud	UDEL	McLane Pumps	srigaud@udel.edu
Courtney Schatzman	SIO/STS	Oxygen/Deck/ ODF Data Processing	cschatzman@ucsd.edu
Rachel Shelley Amy Simoneau Geoffrey J. Smith Bettina Sohst Anton Zafereo	FSU WHOI UCSC ODU WHOI	Aerosols/Rain SSSG Tech Underway Towed Fish Fe(II) SSSG Tech Leg 2 only: NanoNutrients/	rshelley@fsu.edu sssg@knorr.whoi.edu geosmit@ucsc.edu bsohst@odu.edu sssg@knorr.whoi.edu
Louise Zimmer	ODU	GT-C Console	lzimmer@odu.edu

* Affiliation abbreviations are listed on page 5

	KEY to Institution Abbreviations				
BIOS	Bermuda Institute of Ocean Sciences				
BLOS	Bigelow Laboratory for Ocean Sciences				
BU	Boston University				
DART	Dartmouth College				
FSU	Florida State University				
HUJ	The Hebrew University of Jerusalem - Institute of Earth Sciences				
IFM-G	(IFM-GEOMAR) Leibniz-Institut für Meereswissenschaften an der Universität Kiel				
IMROP	Mauritanian Institute for Oceanographic Research and Fisheries				
INETI	Instituto Nacional de Engenharia, Tecnologia e Inovação (Portugal)				
LDEO	Lamont-Doherty Earth Observatory				
MIT	Massachusetts Institute of Technology				
MPI-B	Max-Planck-Institut für Marine Mikrobiologie, Bremen				
NASA	National Aeronautics and Space Administration				
NOSAMS	National Ocean Science AMS Facility (WHOI)				
ODU	Old Dominion University				
PU	Princeton University				
SC	University of South Carolina				
SSSG	Shipboard Scientific Services Group (WHOI)				
STS/ODF	Shipboard Technical Support/Oceanographic Data Facility (UCSD/SIO)				
STS/RT	Shipboard Technical Support/Research Technicians (UCSD/SIO)				
SIO/GRD	Geosciences Research Division (UCSD/SIO)				
UAF	University of Alaska, Fairbanks				
UBC	University of British Columbia				
UCSB	University of California, Santa Barbara				
UCSC	University of California, Santa Cruz				
UCSD/SIO	University of California, San Diego/Scripps Institution of Oceanography				
UDEL	University of Delaware				
UH	University of Hawaii				
UMN	University of Minnesota				
UM/RSMAS	University of Miami/Rosenstiel School of Marine and Atmospheric Science				
URI	University of Rhode Island				
USC	University of Southern California				
USM	University of Southern Mississippi				
UW	University of Washington				
WHOI	Woods Hole Oceanographic Institution				
WSU	Wayne State University				

Description of Measurement Techniques

1. CTD/Hydrographic Measurements Program

Two types of rosette/SBE9*plus* CTD casts (65 SIOR/30L-Niskin and 40 GT-C/15L-GoFlo) were made at 22 station locations during GEOTRACES 2011. 13 shallow and 13 deep McLane pump profiles were done at all Full and Super Stations, with an SBE19*plus* CTD attached to the end of the wire.

Station	Station	Total	Cast
Туре	Numbers*	Casts	Types
			1 Shallow/1 Deep GT-C/15L GoFlo
Suport	1 10 12 16 20	10 11	3 Shallow/3 Deep SIOR/30L Niskin
Super	1,10,12,10,20	10-11	1 Shallow/1 Deep McLane Pump
			(1 Mid-Depth or "plume" GT-C/15L GoFlo)
			1 Shallow/1 Deep GT-C/15L GoFlo‡
	2 2 4 6 8 14 18 22 24	67	2 Shallow/1 Deep SIOR/30L Niskin
Full	2,3,4,6,8,14,18,22,24	6-7	1 Shallow/1 Deep McLane Pump
			(1 Mid-Depth GT-C/15L GoFlo)
Domi	E 11 12 1E 17 10 21 22	C	1 Shallow GT-C/15L GoFlo
Deill	0,11,10,10,17,19,21,23	Z	1 Shallow SIOR/30L Niskin

* Stations 7 and 9 were skipped due to time constraints † Extra GT-C cast on station 10; cast 9 "skipped" on station 12 ‡ No GoFlo casts on station 4

Table 1.0 GEOTRACES 2011 Station/Cast Summary

Hydrographic measurements consisted of salinity and nutrient water samples taken from each rosette cast, plus dissolved oxygen from each SIOR rosette cast. In addition, salinity samples were taken from the surface pump at one SIOR $U/^{234}Th$ cast per station, and from Niskins attached to the wire at each deep-cast McLane pump. Pressure, temperature, conductivity/salinity, dissolved oxygen, transmissometer and fluorometer data were recorded from all CTD/rosette profiles. No major problems were encountered during the operation.

The distribution of samples is shown in figures 1.0 and 1.1.

Figure 1.0 GEOTRACES 2011 Sample distribution, Leg 1: stations 1-(10).

Figure 1.1 GEOTRACES 2011 Sample distribution, Leg 2: stations 10-24.

1.1. SIOR/30L-Niskin Water Sampling Package

SIOR/30L-Niskin Rosette/CTD casts were performed with a package consisting of a 12-bottle rosette frame (SIO/STS), a 24-place carousel (SBE32) and 12 30L General Oceanics bottles with an absolute volume of 30L each. Underwater electronic components consisted of a Sea-Bird Electronics SBE9*plus* CTD with dual pumps (SBE5), dual temperature (SBE3*plus*), reference temperature (SBE35RT) dual conductivity (SBE4C), dissolved oxygen (SBE43), transmissometer (WET Labs C-Star), fluorometer (Seapoint SCF) and altimeter (Tritech LPRA-200 or Simrad 807). A second dissolved oxygen plus oxygen temperature sensor (JFE Advantech RINKO-III) was incorporated into the data stream for future sensor evaluation; it was not processed for this cruise.

The CTD was mounted horizontally in an SBE CTD cage attached to and centered on the bottom of the rosette frame, allowing free flow of water to the temperature sensor. The SBE3*plus* temperature, SBE4C conductivity and SBE43 dissolved oxygen sensors and their respective pumps and tubing were mounted horizontally in the CTD cage. The transmissometer was mounted horizontally, and the fluorometer was mounted horizontally near the bottom of the rosette frame. The altimeter was mounted on the inside of the bottom frame ring.

The rosette system was suspended from a UNOLS-standard three-conductor 0.322" electro-mechanical sea cable. The sea cable was terminated at the beginning of GEOTRACES 2011. The R/V Knorr's Markey DESH-5 winch was used for all casts.

The deck watch prepared the rosette 5-15 minutes prior to each cast. The bottles were cocked and all valves, vents and lanyards were checked for proper orientation. Once stopped on station, the rosette was moved out from the forward hangar to the deployment location under the squirt boom using an airpowered cart and tracks. The CTD was powered-up and the data acquisition system started from the main lab. Tag lines were threaded through the rosette frame and syringes were removed from CTD intake ports. The rosette was unstrapped from the airpowered cart. The winch operator was directed by the deck watch leader to raise the package. The squirt boom was extended outboard and the rosette package was quickly lowered into the water between the Geo-Fish boom and its aft tag line. Rosette tag lines were removed and the package was lowered to 10 meters, until the console operator determined that the sensor pumps had turned on and the sensors were stable. The winch operator was then directed to bring the package back to the surface, re-zero the wireout and start the descent.

Most deep rosette casts were lowered to within 5-25 meters of the bottom, using the altimeter, winch wireout, CTD depth and echosounder depth to determine the distance.

For each up cast, the winch operator was directed to stop the winch at up to 12 pre-determined sampling depths, determined by the GEOTRACES program participants prior to the cruise. To ensure that package shed wake had dissipated, the CTD console operator waited 30 to optimally 60 seconds prior to tripping sample bottles. An additional 10-second wait was required after tripping a bottle before moving to the next consecutive trip depth, to allow the SBE35RT time to take its readings. The deck watch leader directed the package to the surface after the last bottle trip.

Recovering the package at the end of the deployment was essentially the reverse of launching, with the additional use of poles and snap-hooks to attach tag lines to the deck mounted air tuggers. The rosette was secured on the cart and moved into the forward hangar for sampling. The bottles and rosette were examined before samples were taken, and anything unusual was noted on the sample log.

Each bottle on the rosette had a unique serial number, independent of the bottle position on the rosette. Only one bottle was changed out during the cruise: rosette position 5 (S/N 5 to S/N 15) was changed out before station 10 cast 6 due to a leaking bottom cap. A piece of plastic debris was later found to be embedded in its o-ring.

Sampling for specific programs was outlined on sample log sheets prior to cast recovery or at the time of collection.

Routine CTD maintenance included soaking the conductivity and oxygen sensors in fresh water between casts to maintain sensor stability, and putting dilute 0.1% Triton-X solution through the conductivity sensors to eliminate any accumulating bio-films. Rosette maintenance was performed on a regular basis. Valves and o-rings were inspected for leaks. The rosette, CTD and carousel were rinsed with fresh water as part of the routine maintenance.

1.2. SIOR Underwater Electronics and Laboratory Calibrations

The SIOR SBE9*plus* CTD supplied a standard SBE-format data stream at a data rate of 24 frames/second. The sensors and instruments used during GEOTRACES 2011, along with pre-cruise laboratory calibration information, are listed below. Copies of the pre-cruise calibration sheets for various sensors are included in Appendix D.

		Serial	CTD	Pre-Cruise	e Calibration	
Instrument/Sensor	Mfr./Model*	Number	Channel	Date	Facility*	
Carousel Water Sampler	SBE32 (24-Pl.)	3231807-0456	n/a			
CTD	SBE9 <i>plus</i>	09P41717-0831	n/a			
Pressure	Paroscientific Digiquartz 401K-105	831-58952	Freq.2	25-Oct-2011	SIO/STS	
Primary						
Temperature (T1)	SBE3 <i>plu</i> s	03P-4907	Freq.0	24-Oct-2011	SIO/STS	
Conductivity (C1)	SBE4C	04-2112	Freq.1	14-Sep-2011	SBE	
Dissolved Oxygen	SBE43	43-0875	Aux2/V2	09-Sep-2011	SBE	
Pump	SBE5T	05-4890	n/a			
Secondary						
Temperature (T2)	SBE3 <i>plus</i>	03P-4138	Freq.3	28-Oct-2011	SIO/STS	
Conductivity (C2)	SBE4C	04-2659	Freq.4	21-Sep-2011	SBE	
Pump	SBE5T	05-4374	n/a			
Transmissometer	WETLabs C-Star	CST-491DR	Aux1/V1†	Nov/Dec-2011	Shipboard	
Chlorophyll Fluorometer	Seapoint	SCF2758	Aux3/V4†	n/a	Seapoint‡	
Altimeter	Tritech LRPA-200	221666	Aux1/V0		•	
Diss. Oxygen/Oxy Temp.	RINKO-III	94	Aux4/	21 Oct 2011	IEE Advantach	
(Experimental)§	ARO-CAV	04	V6+V7	21-001-2011		
Reference Temperature	SBE35RT	3528706-0035	n/a	27-Nov-2011	SIO/STS	
Deck Unit (in lab)	SBE11 <i>plus</i> V2	11P21561-0518	n/a			

* SBE = Sea-Bird Electronics

† Transm. and Fluorm. Channels switched for stations 21-24 only (V1/V4)

‡ Fluorometer used 10x cable

§ Removed for Station 8 and Station 20/Casts 4-11

Table 1.2.0 GEOTRACES 2011 SIO Rosette Underwater Electronics.

An SBE35RT (reference temperature) sensor was connected to the SBE32 carousel and recorded a temperature for each bottle closure. These temperatures were used as additional CTD calibration checks. The SBE35RT was utilized per the manufacturer's specifications and instructions, as described in SBE's manual (*http://www.seabird.com/pdf_documents/manuals/36_015.pdf*).

The SBE9*plus* CTD was connected to the SBE32 24-place carousel providing for single-conductor sea cable operation. The sea cable armor was used for ground (return). Power to the SBE9*plus* CTD (and sensors), SBE32 carousel and Tritech LPRA-200 altimeter was provided through the sea cable from an SIO/STS SBE11*plus* deck unit in the main lab.

1.3. Navigation and Bathymetry Data Acquisition

Navigation data were acquired at 1-second intervals from the ship's C&C Technologies C-Nav DGPS receiver by a Linux system beginning November 4, 2011, starting a few days before the ship departed Woods Hole until after the ship docked in Praia, Cabo Verde on December 11.

12KHz single-beam bathymetric data from the Knudsen 320B Series Black Box were fed realtime into the STS acquisition system and merged with navigation data. Incoming depth data were already corrected for hull depth, and sound velocity values were intermittently adjusted by the SSSG Technicians as the cruise progressed. No additional corrections to the data were applied.

Bottom depths associated with rosette casts were also recorded on the Console Logs during deployments. The automatically recorded Knudsen depths were extracted from the stored navigation data and used for cast event depths. There was a single 16-minute gap in the acquired navigation/bathymetry data (underway between stations 10 and 11) that did not affect station data.

1.4. SIOR CTD Data Acquisition and Rosette Operation

The SIOR CTD data acquisition system consisted of an SBE-11*plus* (V2) deck unit and two networked generic PC workstations running CentOS-5.6 Linux. Each PC workstation was configured with a color graphics display, keyboard, trackball and DVD+RW drive. One system had a Comtrol Rocketport PCI multiple port serial controller providing 8 additional RS-232 ports. The systems were interconnected through the ship's network. These systems were available for real-time operational and CTD data displays, and provided for CTD and hydrographic data management.

One of the workstations was designated the CTD console and was connected to the CTD deck unit with two RS-232 cables, one feed for the CTD signal and the other a modem channel for carousel communication. The CTD console provided an interface and operational displays for controlling and monitoring a CTD deployment and closing bottles on the rosette. The other workstation was designated as the website and database server, and maintained the hydrographic database for GEOTRACES 2011. Redundant backups were managed automatically. Both PCs were synced with the ship's timeserver on a regular basis to keep accurate UTC time.

SIOR CTD deployments were initiated by the console operator after the ship stopped on station. The acquisition program was started and the deck unit turned on at least 2 minutes prior to package deployment. The watch maintained a console operations log containing a description of each deployment, a record of every attempt to close a bottle and any relevant comments. The deployment and acquisition software presented a short dialog instructing the operator to turn on the deck unit, to examine the onscreen CTD data displays and to notify the deck watch that this had been accomplished.

After the deck watch deployed the rosette, the winch operator lowered it to 10 meters, deeper for heavier seas. The CTD sensor pumps were configured with a 5-second start-up delay after detecting seawater conductivities. The console operator checked the CTD data for proper sensor operation and waited for sensors to stabilize, then instructed the winch operator to bring the package to the surface and descend to a specified target depth (wire-out). The profiling rate was typically 30m/min in the top 100m and 60m/min deeper than 100m, depending on sea cable tension and sea state.

The progress of the deployment and CTD data quality were monitored through interactive graphics and operational displays. Bottle trip locations were transcribed onto the console and sample logs. The sample log was used later as an inventory of samples drawn from the bottles. The altimeter channel, CTD depth, winch wire-out and bathymetric depth were all monitored to determine the distance of the package from the bottom, allowing a safe approach to 5-10 meters.

Bottles were closed on the up-cast by operating an on-screen control. The winch operator was directed to slow to 30m/min at 100m above the target depth, then the final wireout was adjusted using the altimeter reading. Bottles were tripped 30-40 seconds after the package stopped to allow the rosette wake to dissipate and the bottles to flush. The winch operator was instructed to proceed to the next bottle stop at least 10 seconds after closing bottles to ensure that stable CTD data were associated with the trip and to allow the SBE35RT temperature sensor to take a measurement at the bottle trip.

After the last bottle was closed, the package was brought on deck. Once the rosette was on deck, the console operator terminated the data acquisition, turned off the deck unit and assisted with rosette sampling.

1.5. SIOR CTD Data Processing

Shipboard CTD data processing was performed automatically at the end of each deployment using SIO/STS CTD processing software v.5.1.6-1. Raw GT-C CTD data and bottle trips, acquired by SBE Seasave V 7.17a on a Windows XP workstation, were also imported into the Linux processing system, providing a backup of the raw data.

Pre-cruise laboratory calibrations were applied, then CTD data were processed into a 0.5-second time series, bottle trips were extracted, and a 1-decibar down-cast pressure series of the data was created. The pressure-series data were used by the web service for interactive plots, sections and CTD data distribution. Time-series data, and eventually basic up-cast pressure-series data, were also available for distribution through the website.

SIOR CTD data were examined at the completion of each deployment for clean corrected sensor response and any calibration shifts. As bottle salinity and oxygen results became available, they were used to refine shipboard conductivity and oxygen sensor calibrations.

Theta-S and theta- O_2 comparisons were made between down and up casts as well as between groups of adjacent deployments. Vertical sections of measured and derived properties from sensor data were checked for consistency.

1.6. SIOR CTD Shipboard Calibration Procedures

CTD #831 was used for all SIOR Rosette/CTD casts during GEOTRACES 2011. The CTD was deployed with all sensors and pumps aligned horizontally, due to limited vertical clearance inside the 12-place/30L rosette. The primary temperature sensor (T1/03P-4907) and conductivity sensor (C1/04-2112) were used for all reported CTD data.

The SBE35RT Digital Reversing Thermometer (S/N 3528706-0035) served as an independent calibration check for T1 and T2. *In situ* salinity and dissolved O_2 check samples collected during each cast were used to calibrate the conductivity and dissolved O_2 sensors.

1.6.1. CTD Pressure

The Paroscientific Digiquartz pressure transducer (S/N 831-58952) was calibrated in October 2011 at the SIO/STS Calibration Facility. The calibration coefficients provided on the report were used to convert frequencies to pressure; then the calibration correction slope and offset were applied to the converted pressures during each cast.

An additional -0.3 dbar offset was applied to all SIOR CTD data after evaluating surface air pressures during the first 3 SIOR casts. These 3 casts were re-averaged, and the correction was applied during acquisition for the remaining casts. Pre- and post-cast on-deck/out-of-water residual pressure offsets varied from -0.22 to 0.11 dbar before the casts, and -0.31 to 0.06 dbar after the casts. No further adjustments were required for pressure.

1.6.2. CTD Temperature

The same primary (T1/03P-4907) and secondary (T2/03P-4138) temperature sensors were used during all GEOTRACES 2011 casts. Calibration coefficients derived from the pre-cruise calibrations, plus shipboard temperature corrections determined during the cruise, were applied to raw primary and secondary sensor data during each cast.

A single SBE35RT was used as a tertiary temperature check. It was located equidistant between T1 and T2 with the sensing element aligned in a plane with the T1 and T2 sensing elements. The SBE35RT Digital Reversing Thermometer is an internally-recording temperature sensor that operates independently of the CTD. It is triggered by the SBE32 carousel in response to a bottle closure. According to the manufacturer's specifications, the typical stability is 0.001°C/year. The SBE35RT on GEOTRACES 2011 was set to internally average over a single 1.1-second period.

Two independent metrics of calibration accuracy were examined. At each bottle closure, the primary and secondary temperature were compared with each other and with the SBE35RT temperatures.

A single temperature correction was required for each sensor during GEOTRACES 2011. Both primary and secondary temperature sensors exhibited a linear pressure response compared to the SBE35RT. Offsets for T1 drifted less than 0.0015°C over 5 weeks, and were adjusted as a function of time at the end of the cruise. T2 offsets remained fairly stable with time.

The final corrections for the primary temperature sensor used on GEOTRACES 2011 is summarized in Appendix A. All corrections made to CTD temperatures had the form: $T_{cor} = T + tp_1P + t_0$

Residual temperature differences after correction are shown in figures 1.6.2.0 through 1.6.2.5.

Figure 1.6.2.2 Deep T1-T2 by station (Pressure > 1000dbar).

Figure 1.6.2.3 Deep SBE35RT-T1 by station (Pressure > 1000dbar).

Figure 1.6.2.4 T1-T2 by pressure (-0.01°C ≤*T*1 – *T*2≤0.01°C).

Figure 1.6.2.5 SBE35RT-T1 by pressure (-0.01°C ≤*T*1 – *T*2≤0.01°C).

The 95% confidence limits for the mean low-gradient differences are $\pm 0.0015^{\circ}$ C for T1-T2, $\pm 0.0018^{\circ}$ C for SBE35RT-T1. The 95% confidence limit for deep temperature residuals (where pressure > 1000dbar) is $\pm 0.0015^{\circ}$ C for T1-T2 and $\pm 0.0018^{\circ}$ C for SBE35R T-T1.

1.6.3. CTD Conductivity

The same primary (C1/04-2112) and secondary (C2/04-2659) conductivity sensors were used during all GEOTRACES 2011 casts. Calibration coefficients derived from the pre-cruise calibrations were applied to convert raw frequencies to conductivity. Shipboard conductivity corrections, determined during the cruise, were applied to primary and secondary conductivity data for each cast.

Corrections for both CTD temperature sensors were finalized before analyzing conductivity differences. Two independent metrics of calibration accuracy were examined. At each bottle closure, the primary and secondary conductivity were compared with each other. Each sensor was also compared to conductivity calculated from check sample salinities using CTD pressure and temperature.

The differences between primary and secondary temperature sensors were used as filtering criteria to reduce the contamination of conductivity comparisons by package wake. The coherence of this relationship is shown in figure 1.6.3.0.

Figure 1.6.3.0 Coherence of conductivity differences as a function of temperature differences.

Uncorrected conductivity comparisons are shown in figures 1.6.3.1 through 1.6.3.3.

Figure 1.6.3.1 SIOR Uncorrected C1 – C2 by station (-0.01°C \leq T1 – T2 \leq 0.01°C).

Figure 1.6.3.2 SIOR Uncorrected $C_{Bottle} - C1$ by station (-0.01°C $\leq T1 - T2 \leq 0.01$ °C).

Figure 1.6.3.3 SIOR Uncorrected C_{Bottle} – C2 by station (-0.01°C \leq T1-T2 \leq 0.01°C).

Conductivity differences were examined for changes dependent on time, pressure or conductivity. A pressure dependence was observed for C1, and a conductivity dependent response was seen for C2. Linear C1(P) and C2(C) corrections were determined separately, using $C_{Bottle} - C1_{CTD}$ differences for stations 1-14 only, using data at all pressures where T1-T2 differences were within ±0.005°C. These corrections were applied to all SIOR CTD casts on GEOTRACES 2011.

Conductivity and salinity differences were re-examined at the end of the cruise, after the T1 offsets were adjusted. T1 offsets re-aligned the salinity differences, so the conductivity corrections required no change.

The residual C1-C2 and Bottle-C1 differences after correction are shown in figures 1.6.3.4 through 1.6.3.11.

Figure 1.6.3.4 SIOR Corrected C1 – C2 by station (-0.01°C ≤T1-T2≤0.01°C).

Figure 1.6.3.5 SIOR Corrected C_{Bottle} – C1 by station (-0.01°C \leq T1-T2 \leq 0.01°C).

Figure 1.6.3.6 SIOR Deep Corrected C1 – C2 by station (Pressure >= 1000dbar).

Figure 1.6.3.7 SIOR Deep Corrected C_{Bottle} – C1 by station (Pressure >= 1000dbar).

Figure 1.6.3.8 SIOR Corrected C1 - C2 by pressure (-0.01°C \leq T1-T2 \leq 0.01°C).

Figure 1.6.3.9 SIOR Corrected C_{Bottle} – C1 by pressure (-0.01°C \leq T1-T2 \leq 0.01°C).

Figure 1.6.3.10 SIOR Corrected C1 – C2 by conductivity (-0.01°C \leq T1-T2 \leq 0.01°C).

Figure 1.6.3.11 SIOR Corrected $C_{Bottle} - C1$ by conductivity (-0.01°C \leq T1-T2 \leq 0.01°C).

Corrections for both SIOR conductivity sensors are listed below:

C1 sensor corrections: $C_{cor} = C + 3.3869e - 07 \cdot P - 0.000259$ C2 sensor corrections: $C_{cor} = C - 1.0745e - 04 \cdot C + 0.004254$

The final corrections for C1 are also summarized in Appendix A.

Salinity residuals after applying shipboard P/T/C corrections are summarized in figures 1.6.3.12 through 1.6.3.14. Only CTD and bottle salinity data with "acceptable" quality codes are included in the differences.

Figure 1.6.3.12 Salinity residuals by station (-0.01°C \leq T1-T2 \leq 0.01°C).

Figure 1.6.3.13 Salinity residuals by pressure (-0.01°C ≤T1-T2≤0.01°C).

Figure 1.6.3.14 Deep Salinity residuals by station (Pressure >= 1000dbar).

Figures 1.6.3.13 and 1.6.3.14 represent estimates of the salinity accuracy of GEOTRACES 2011. The 95% confidence limits are ± 0.0024 PSU relative to bottle salinities for deep salinities, and ± 0.0073 PSU relative to bottle salinities for all salinities, where T1-T2 is within $\pm 0.01^{\circ}$ C.

A single SBE43 dissolved O_2 sensor (DO/43-0875) was used during GEOTRACES 2011. The sensor was plumbed into the primary T1/C1 pump circuit after C1.

The DO sensor was calibrated to dissolved O_2 check samples taken at bottle stops by matching the down cast CTD data to the up cast trip locations on isopycnal surfaces, then calculating CTD dissolved O_2 using a DO sensor response model and minimizing the residual differences from the check samples. A non-linear least-squares fitting procedure was used to minimize the residuals and to determine sensor model coefficients, and was accomplished in three stages.

The time constants for the lagged terms in the model were first determined for the sensor. These time constants are sensor-specific but applicable to an entire cruise. Then casts were fit individually to check-sample data.

GEOTRACES 2011 had numerous casts with deep check samples only. In those cases, shallower sample data from other casts at the same station were used to fit the upper end of the CTDO₂ data.

All casts within a station, and from nearby stations, were examined using plots of Pressure and/or Theta vs O_2 to check for consistency.

Standard and blank values for check sample oxygen titration data were smoothed, and the oxygen values recalculated, prior to the final fitting of CTD oxygen.

CTD dissolved O₂ residuals are shown in figures 1.6.4.0-1.6.4.2.

Figure 1.6.4.0 O₂ residuals by station (-0.01°C ≤T1-T2≤0.01°C).

Figure 1.6.4.1 O_2 residuals by pressure (-0.01°C \leq T1-T2 \leq 0.01°C).

Figure 1.6.4.2 Deep O_2 residuals by station (Pressure >= 1000dbar).

The standard deviations of 0.74 μ mol/kg for deep oxygens and 1.55 μ mol/kg for all oxygens are only presented as general indicators of goodness of fit. SIO/STS makes no claims regarding the precision or accuracy of CTD dissolved O_2 data.

The general form of the SIO/STS DO sensor response model equation for Clark cells follows Brown and Morrison [Brow78], and Millard [Mill82], [Owen85]. SIO/STS models DO sensor secondary responses with lagged CTD data. *In situ* pressure and temperature are filtered to match the sensor responses. Time constants for the pressure response (τ_p), a slow (τ_{Tf}) and fast (τ_{Ts}) thermal response, package velocity (τ_{dP}), thermal diffusion (τ_{dT}) and pressure hysteresis (τ_h) are fitting parameters. Once determined for a given sensor, these time constants typically remain constant for a cruise. The thermal diffusion term is derived by low-pass filtering the difference between the fast response (T_s) and slow response (T_l) temperatures. This term is intended to correct non-linearities in sensor response introduced by inappropriate analog thermal compensation. Package velocity is approximated by low-pass filtering 1storder pressure differences, and is intended to correct flow-dependent response. Dissolved O_2 concentration is then calculated:

$$O_2 m I / I = \left[C_1 V_{DO} e^{(C_2 \frac{P_h}{5000})} + C_3 \right] \cdot f_{sat}(T, P) \cdot e^{(C_4 T_1 + C_5 T_8 + C_7 P_1 + C_6 \frac{dO_c}{dt} + C_8 \frac{dP}{dt} + C_9 dT)}$$
(1.6.4.0)

where:

Dissolved O_2 concentration in ml/l;
Raw sensor output;
Sensor slope
Hysteresis response coefficient
Sensor offset
O_2 saturation at T,P (ml/l);
<i>in situ</i> temperature (°C);
<i>in situ</i> pressure (decibars);
Low-pass filtered hysteresis pressure (decibars);
Long-response low-pass filtered temperature (°C);
Short-response low-pass filtered temperature (°C);
Low-pass filtered pressure (decibars);
Sensor current gradient (µamps/sec);
Filtered package velocity (db/sec);
low-pass filtered thermal diffusion estimate ($T_s - T_l$).
Response coefficients.

CTD $O_2 m I/I$ data are converted to $\mu mol/kg$ units on demand.

1.7. SIOR Bottle Sampling

At the end of each rosette deployment water samples were drawn from the 30L Niskin bottles in the following order:

SIOR/30L-Niskin Cast Sampling Order									
	Demi	Demi Super/Full Super/Full Super Onl							
Parameters		(Nd/230Th)		(234Th/Ra/Pigs)	(Pb-Po/Pu/Si)		Pu		
Sampled	Shallow	Shallow	Deep	Shallow	Shallow	Deep	Deep		
CFCs,SF ₆	Х	Х	х						
Не	х	х	x						
O ₂	Х	Х	x	Х	Х	Х	х		
Nutrients	Х	Х	x	х	Х	х	х		
Salinity	Х	Х	x	х	Х	х	х		
¹⁴ C and ¹³ C		х	х						
³ H	х	Х	X						
DIC / Total Alk.		Х	х						
$^{18}O - H_2O$		Х	х						
²³⁴ Th				х					
²³⁸ U				х					
²²⁶ Ra				х					
Chisholm DNA		Х		х					
LaRoche DNA		Х							
$d^{15}N - NO_3$	х	х	x						
Thiols		Х	x						
Ва		х	х						
Th / Pa / Nd		x	x		(x)				
REE(UH)		~	^		(X)				
Pb-Po					х	х			
Si Isotopes					х	х			
Pu-Cs					Х	Х	х		

The correspondence between individual sample containers and the rosette bottle position from which the sample was drawn was recorded on the sample log for the cast. These bottle positions were numbered 1-12 for the SIOR/30L Niskin Rosette, and "13" for samples drawn from the Radium UW pump and associated with SIOR casts. This log also included any comments or anomalous conditions noted about the rosette and bottles.

Normal sampling practice for the 30L Niskin rosette included opening the drain valve and then the air vent on the bottle, indicating an air leak if water escaped. This observation together with other diagnostic comments (e.g. "lanyard caught in lid", "valve left open") that might later prove useful in determining sample integrity were routinely noted on the sample log. Drawing oxygen samples also involved taking the sample draw temperature from the bottle. The temperature was noted on the sample log and was sometimes useful in determining leaking or mis-tripped bottles.

Once individual samples had been drawn and properly prepared, they were distributed for analysis. Oxygen, nutrient and salinity analyses were performed on computer-assisted (PC) analytical equipment networked to the data processing computer for centralized data management.

1.8. STS/ODF Bottle Data Processing

Water samples collected and properties analyzed shipboard were centrally managed in a relational database (PostgreSQL 8.1.23-1) running on a CentOS-5.6 Linux system. A web service (OpenACS 5.3.2 and AOLServer 4.5.1-1) front-end provided ship-wide access to CTD and water sample data. Web-based

facilities included on-demand arbitrary property-property plots and vertical sections as well as data uploads and downloads.

The sample log and any diagnostic comments were entered into the database once sampling was completed. Quality flags associated with sampled properties were set to indicate that the property had been sampled, and sample container identifications were noted where applicable (e.g., oxygen flask number).

Analytical results were provided on a regular basis by STS, and by other analytical groups near the end of the cruise, then incorporated into the database. These results included a quality code associated with each measured value and followed the coding scheme developed for the World Ocean Circulation Experiment Hydrographic Programme (WHP) [Joyc94].

Table 1.8.0 shows the number of samples drawn and the number of times each WHP sample quality flag was assigned for each basic hydrographic property:

STS/ODF Samples Stations 1- 24								
	Reported	Reported WHP Quality Codes						
	levels	1	2	3	4	5	7	9
Bottle	1750		1734	6	7			3
SIOR CTD Salt	780		780					
SIOR CTD Oxy	772		772					8
Salinity	1720		1655	48	17			30
Oxygen	772		770		2	2		6
Silicate	1698		1690		7			31
Nitrate	1698		1688	1	8			31
Nitrite	1698		1689	1	7			31
Phosphate	1698		1685	2	10			31

Table 1.8.0 Frequency of WHP quality flag assignments.

Additionally, data investigation comments are presented in Appendix C.

Various consistency checks and detailed examination of the data continued throughout the cruise.

1.9. Salinity

Equipment and Techniques

A single Guildline Autosal 8400B salinometer (S/N 57-396) located in the Knorr's O1 lab was used for all salinity measurements. This salinometer had been modified to include a communication interface for computer-aided measurement, a higher capacity pump and two temperature sensors. These sensors were used to measure air and bath temperatures.

Samples were analyzed after they had equilibrated to laboratory temperature, usually within 12-29 hours after collection. The salinometer was standardized for each group of analyses, 20 to 60 samples, using at least two fresh vials of standard seawater per group.

Salinometer measurements were aided by a computer using LabVIEW software developed by SIO/STS. The software maintained a log of each salinometer run, including salinometer settings and air and bath temperatures. The air temperature was displayed and monitored using a 48-hour strip-chart in order to observe cyclical changes. The program also guided the operator through the standardization procedure and making sample measurements. The analyst was prompted to change samples and flush the cells between readings.

Normal standardization procedures included flushing the cell at least 2 times with a fresh vial of IAPSO Standard Seawater (SSW), setting the flow rate as low as possible during the last fill, and monitoring the STD dial setting. If the STD dial changed by 10 units or more since the last salinometer run (or during standardization), another vial of SSW was opened and the standardization procedure was repeated to

verify the setting.

Samples were run using 2 flushes before the final fill. The computer determined the stability of a measurement and prompted for additional readings if there appeared to be drift. The operator could annotate problems in the salinometer log, and routinely added comments about cracked sample bottles, loose thimbles, salt crystals, sample volume or anything unusual about the sample or analysis.

Cases of samples were stacked next to the Autosal while equilibrating to room temperature. The temperature of the deepest sample (coldest) and surface sample (warmest) were monitored to determine when the case was ready to be analyzed.

Sampling and Data Processing

A total of 1852 salinity measurements were made, including 924 from the GTC rosette casts, 796 from the SIO rosette casts, 100 from deep pump niskins, 31 fish samples, and 1 underway radium bag.

Salinity samples were drawn into 200 ml Kimax high-alumina borosilicate bottles, which were rinsed three times with the sample prior to filling. The bottles were sealed with custom-made plastic insert thimbles and kept closed with Nalgene screw caps. This assembly provides very low container dissolution and sample evaporation. Prior to sample collection, inserts were inspected for proper fit and loose inserts replaced to insure an airtight seal. The draw and equilibration times were logged for all casts. Laboratory temperatures were logged at the beginning and end of each run.

PSS-78 salinity [UNES81] was calculated for each sample from the measured conductivity ratios. The difference between the initial vial of standard water and the next one run as an unknown was applied as a linear function of elapsed run time to the measured ratios. The corrected salinity data were then incorporated into the cruise database.

Data processing included double checking that the station, sample and box number had been correctly assigned, and reviewing the data and log files for operator comments. The salinity data were compared to CTD salinities and were used for shipboard sensor calibration.

Laboratory Temperature

The salinometer water bath temperature was maintained slightly higher than ambient laboratory air temperature at 24 °C. The ambient air temperature varied from 21.5 to 26 °C during the cruise.

The ambient room temperature also maintained a steady observable 24-hour cycle that was dependent on environmental conditions. There were occasional temperature spikes that brought the room temperature above bath temperature. At these times, or when room temperature was on the daily rise, an analysis run would be delayed until room temperature had again stabilized below bath temperature. This meant runs were usually done between 2200 and 0700 local time.

Standards

IAPSO Standard Seawater (SSW) Batch P-153 was used to standardize all runs. Approximately 110 bottles of SSW were used during GEOTRACES 2011.

1.10. Oxygen Analysis

Equipment and Techniques

Dissolved oxygen analyses were performed with an SIO/STS ODF-designed automated oxygen titrator using photometric end-point detection based on the absorption of 365nm wavelength ultra-violet light. The titration of the samples and the data logging were controlled by PC LabVIEW software developed by SIO/STS. Thiosulfate was dispensed by a Dosimat 665 buret driver fitted with a 1.0 mL buret. ODF used a whole-bottle modified-Winkler titration following the technique of Carpenter [Carp65] with modifications by Culberson *et al.* [Culb91], but with higher concentrations of potassium iodate standard (~0.012N) and thiosulfate solution (~55 gm/l). Pre-made liquid potassium iodate standards were run daily. Reagent/distilled water blanks were also determined daily, or more often if a change in reagents required it to account for the presence of oxidizing or reducing agents.

Sampling and Data Processing

774 oxygen measurements were made from the SIO 30L Niskin rosette. Samples were collected for dissolved oxygen analyses soon after the rosette was brought on board. Two different 24-flask cases were alternated by cast to minimize flask calibration issues, if any. Using a Tygon and silicone drawing tube, nominal 125ml volume-calibrated iodine flasks were rinsed 3 times with minimal agitation, then filled and allowed to overflow for at least 3 flask volumes. The sample drawing temperatures were measured with an electronic resistance temperature detector (RTD) embedded in the drawing tube. These temperatures were used to calculate μ mol/kg concentrations, and as a diagnostic check of bottle integrity. Reagents (*MnCl*₂ then *Nal/NaOH*) were added to fix the oxygen before stoppering. The flasks were shaken twice (10-12 inversions each time) to assure thorough dispersion of the precipitate: once immediately after drawing, and then again after about 20 minutes.

The samples were analyzed within 24 hours of collection, and the data were incorporated into the cruise database.

Thiosulfate normalities were calculated from each standardization and corrected to 20°C. The thiosulfate normalities and blanks were monitored for possible drifting or possible problems when new reagents were used.

Bottle oxygen data were reviewed, ensuring station, cast, bottle number, flask, and draw temperature were entered properly. Any comments made during analysis were also reviewed, making certain that any anomalous actions were investigated and resolved.

After the data were uploaded to the database, oxygen was graphically compared with CTD oxygen and adjoining stations. Any suspicious-looking points were reviewed and comments were made regarding the final outcome of the investigation. These investigations and final data coding are reported in Appendix C.

Volumetric Calibration

Oxygen flask volumes were determined gravimetrically with degassed deionized water to determine flask volumes at ODF's chemistry laboratory. This was done once before using flasks for the first time and periodically thereafter when a suspect volume is detected. The volumetric flasks used in preparing standards were volume-calibrated by the same method, as was the 10 ml Dosimat buret used to dispense standard iodate solution.

Standards

Liquid potassium iodate standards were prepared in 6 liter batches and bottled in sterile glass bottles at ODF's chemistry laboratory prior to the expedition. The normality of the liquid standard was determined by calculation from weight. The standard was supplied by Alfa Aesar (lot B05N35) and has a reported purity of 99.4-100.4%. All other reagents were "reagent grade" and were tested for levels of oxidizing and reducing impurities prior to use.

1.11. Nutrient Analysis

Equipment and Techniques

Nutrient analyses (phosphate, silicate, nitrate+nitrite, nitrite) were performed on a Seal Analytical continuous-flow AutoAnalyzer 3 (AA3). After each run, the charts were reviewed for any problems during the run, any blank was subtracted, and final concentrations (micromoles/liter) were calculated.

The analytical methods used are described by Gordon *et al.* [Gord92] Hager *et al.* [Hage68] and Atlas *et al.* [Atla71].

Silicate

Silicate was analyzed using the technique of Armstrong *et al.* [Arms67]. An acidic solution of ammonium molybdate was added to a seawater sample to produce silicomolybdic acid, which was then reduced to silicomolybdous acid (a blue compound) following the addition of stannous chloride. Tartaric acid was also added to impede PO_4 color development. The sample was passed through a flowcell and the absorbance measured at 660nm.

Reagents

Tartaric Acid (ACS Reagent Grade)

200g tartaric acid dissolved in DW and diluted to 1 liter volume. Stored at room temperature in a polypropylene bottle.

Ammonium Molybdate

10.8g Ammonium Molybdate Tetrahydrate dissolved in 1000ml dilute H₂SO₄*.

*(Dilute $H_2SO_4 = 2.8$ ml conc H_2SO_4 to a liter DW). Added 3 drops 15% ultra pure SDS per liter of solution.

Stannous Chloride (ACS Reagent Grade)

Stock solution:

40g of stannous chloride dissolved in 100 ml 5N HCl. Refrigerated in a polypropylene bottle.

Working solution:

5 ml of stannous chloride stock diluted to 200 ml final volume with 1.2N HCl. Made up daily and stored at room temperature when not in use in a dark polypropylene bottle.

NOTE: Oxygen introduction was minimized by swirling rather than shaking the stock solution.

Nitrate + Nitrite

A modification of the Armstrong *et al.* [Arms67] procedure was used for the analysis of nitrate and nitrite. For the nitrate analysis, the seawater sample was passed through a cadmium reduction column where nitrate was quantitatively reduced to nitrite. Sulfanilamide was introduced to the sample stream followed by N-(1-naphthyl)ethylenediamine dihydrochloride which coupled to form a red azo dye. The stream was then passed through a flowcell and the absorbance measured at 540nm. The same technique was employed for nitrite analysis, except the cadmium column was not present.

Reagents

Sulfanilamide (ACS Reagent Grade)

10g sulfanilamide dissolved in 1.2N HCl and brought to 1 liter volume. Added 5 drops of 40% surfynol 465/485 surfactant. Stored at room temperature in a dark polypropylene bottle.

N-(1-Naphthyl)-ethylenediamine dihydrochloride (N-1-N) (ACS Reagent Grade)

1g N-1-N in DIW, dissolved in DW and brought to 1 liter volume. Added 2 drops 40% surfynol 465/485 surfactant. Stored at room temperature in a dark polypropylene bottle. Discarded if the solution turned dark reddish brown.

Imidazole Buffer (ACS Reagent Grade)

13.6g imidazole dissolved in ~3.8 liters DIW. Stirred for at least 30 minutes until completely dissolved. Added 60 ml of $NH_4Cl + CuSO_4$ mix (see below). Added 4 drops 40% Surfynol 465/485 surfactant. Using a calibrated pH meter, adjusted to pH of 7.83-7.85 with 10% (1.2N)HCl(about 20-30ml of acid, depending on exact strength). Final solution brought to 4L with DIW. Stored at room temperature.

*NH*₄*Cl* + *Cu*SO₄ **mix**:

2g cupric sulfate dissolved in DIW, brought to 100 ml volume (2%) 250g ammonium chloride dissolved in DIW, brought to 1 liter volume. Added 5ml of 2% $CuSO_4$ solution to the NH_4CI stock.

Note: 40% Surfynol 465/485 is 20% 465 plus 20% 485 in DIW.

Prepared solution at least one day before use to stabilize.

Phosphate

Phosphate was analyzed using a modification of the Bernhardt and Wilhelms [Bern67] technique. An acidic solution of ammonium molybdate was added to the sample to produce phosphomolybdic acid, then reduced to phosphomolybdous acid (a blue compound) following the addition of dihydrazine sulfate. The reaction product was heated to ~55°C to enhance color de velopment, then passed through a flowcell and the absorbance measured at 820nm.

Reagents

Ammonium Molybdate (ACS Reagent Grade)

 H_2SO_4 solution:

420 ml of DIW poured into a 2 liter Ehrlenmeyer flask or beaker, this flask or beaker was placed into an ice bath. SLOWLY added 330 ml of conc H_2SO_4 . This solution gets VERY HOT!!

27g ammonium molybdate dissolved in 250ml of DIW. Brought to 1 liter volume with the cooled sulfuric acid solution. Added 5 drops of 15% ultra pure SDS surfactant. Stored in a dark polypropylene bottle.

Dihydrazine Sulfate (ACS Reagent Grade)

6.4g dihydrazine sulfate dissolved in DIW, brought to 1 liter volume and refrigerated.

Sampling and Data Processing

1904 nutrient samples were analyzed from 22 stations:924 from GTC rosette casts, 773 from SIO 30L Niskin rosette casts, 100 from deep pump niskins, 106 from the fish and 1 from the underway radium bag. New pump tubes were installed before the cruise and every 2 weeks during the cruise. Four sets of primary/secondary standards were made up over the course of the cruise. The first was compared to standards brought from shore and each subsequent set was compared to the previous set to ensure continuity between standards. The cadmium column reduction efficiency was checked periodically and ranged between 94%-100% and was replaced when less than 98%.

Nutrient samples were drawn into 40 ml polypropylene screw-capped centrifuge tubes. The tubes and caps were cleaned with 10% HCl and rinsed once with de-ionized water and 2-3 times with sample before filling. Samples were analyzed within twelve hours after sample collection, allowing sufficient time for all samples to reach room temperature. The centrifuge tubes fit directly onto the sampler.

Nutrients, reported in micromoles per kilogram, were converted from micromoles per liter by dividing by sample density calculated at 1 atm pressure (0 db), *in situ* salinity, and an assumed lab temperature of 20°C.

Standards and Glassware

Primary standards for silicate (Na_2SiF_6), nitrate (KNO_3), nitrite ($NaNO_2$), and phosphate (KH_2PO_4) were obtained from Johnson Matthey Chemical Co. and/or Fisher Scientific. The supplier reports purities of >98%, 99.999%, 97%, and 99.999%, The standards were dried for approx 4hrs and allowed to cool down in a desiccator before they were weighed out to 0.01mg. The dry standard is diluted to 1L and the temperature of the solution was recorded. The exact weight, the temperature, and the calibrated volume of the flask were then used to calculate the concentration of the primary standard, and how much of this standard was needed for the desired concentration of secondary standard. The new standards were compared to the old before use. Standardizations were performed at the beginning of each group of analyses with working standards prepared prior to each run from a secondary. The secondary standards were prepared aboard ship by dilution from dry, pre-weighed primary standards. A set of 7 different standard concentrations (Table 1.11.0) were analyzed periodically to determine the deviation from linearity, if any, as a function of concentration for each nutrient.

std	N+N	PO4	SiO3	NO2
1)	0.0	0.0	0.0	0.0
2)	7.75	0.6	30	0.25
3)	15.50	1.2	60	0.50
4)	23.25	1.8	90	0.75
5)	31.00	2.4	120	1.00
6)	38.75	3.0	150	1.25
7)	46.50	3.6	180	1.50

Table 1.11.0 GEOTRACES 2011 Standard Concentrations (µmol/L)

All glass volumetric flasks were gravimetrically calibrated prior to the cruise. The primary standards were dried and weighed prior to the cruise. The exact weight was noted for future reference.

All the reagent solutions, primary and secondary standards were made with fresh distilled deionized water (DIW).

Working standards were made up in low nutrient seawater (LNSW). LNSW was collected off the coast of California and filtered before use at sea during the first part of the cruise. Additional LNSW was collected on the transit between stations 11 and 12, and filtered before use.

All data were initially reported in micromoles/liter. NO3, PO4, and NO2 were reported to two decimal places, and SIL to one. Accuracy was based on the quality of the standards, and is listed with instrument precision in Table 1.11.1:

Nutrient	Accuracy	Precision
Reported	(µmol/L)	(µmol/L)
NO3	0.05	0.05
PO4	0.004	0.004
SIL	2-4	1
NO2	0.05	0.01

Table 1.11.1 GEOTRACES 2011 Nutrient Accuracy and Precision

The detection limits for the methods/instrumentation are shown in Table 1.11.2: (in micromoles/liter):

Nutrient	Detection
Measured	Limit (µmol/L)
NO3+NO2	0.02
PO4	0.02
Sil	0.5
NO2	0.02

References

Arms67.

Armstrong, F. A. J., Stearns, C. R., and Strickland, J. D. H., "The measurement of upwelling and subsequent biological processes by means of the Technicon Autoanalyzer and associated equipment," *Deep-Sea Research*, 14, pp. 381-389 (1967).

Atla71.

Atlas, E. L., Hager, S. W., Gordon, L. I., and Park, P. K., "A Practical Manual for Use of the Technicon AutoAnalyzer® in Seawater Nutrient Analyses Revised," Technical Report 215, Reference 71-22, p. 49, Oregon State University, Department of Oceanography (1971).

Bern67.

Bernhardt, H. and Wilhelms, A., "The continuous determination of low level iron, soluble phosphate and total phosphate with the AutoAnalyzer," *Technicon Symposia,* I, pp. 385-389 (1967).

Brow78.

Brown, N. L. and Morrison, G. K., "WHOI/Brown conductivity, temperature and depth microprofiler," Technical Report No. 78-23, Woods Hole Oceanographic Institution (1978).

Carp65.

Carpenter, J. H., "The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method," *Limnology and Oceanography*, 10, pp. 141-143 (1965).

Culb91.

Culberson, C. H., Knapp, G., Stalcup, M., Williams, R. T., and Zemlyak, F., "A comparison of methods for the determination of dissolved oxygen in seawater," Report WHPO 91-2, WOCE Hydrographic Programme Office (Aug 1991).

Gord92.

Gordon, L. I., Jennings, J. C., Jr., Ross, A. A., and Krest, J. M., "A suggested Protocol for Continuous Flow Automated Analysis of Seawater Nutrients in the WOCE Hydrographic Program and the Joint Global Ocean Fluxes Study," Grp. Tech Rpt 92-1, OSU College of Oceanography Descr. Chem Oc. (1992).

Hage68.

Hager, S. W., Gordon, L. I., and Park, P. K., "A Practical Manual for Use of the Technicon AutoAnalyzer® in Seawater Nutrient Analyses.," Final report to Bureau of Commercial Fisheries, Contract 14-17-0001-1759., p. 31pp, Oregon State University, Department of Oceanography, Reference No. 68-33. (1968).

Joyc94.

Joyce, T., ed. and Corry, C., ed., "Requirements for WOCE Hydrographic Programme Data Reporting," Report WHPO 90-1, WOCE Report No. 67/91, pp. 52-55, WOCE Hydrographic Programme Office, Woods Hole, MA, USA (May 1994, Rev. 2). UNPUBLISHED MANUSCRIPT.

Mill82.

Millard, R. C., Jr., "CTD calibration and data processing techniques at WHOI using the practical salinity scale," Proc. Int. STD Conference and Workshop, p. 19, Mar. Tech. Soc., La Jolla, Ca. (1982).

Owen85.

Owens, W. B. and Millard, R. C., Jr., "A new algorithm for CTD oxygen calibration," *Journ. of Am. Meteorological Soc.*, 15, p. 621 (1985).

UNES81.

UNESCO, "Background papers and supporting data on the Practical Salinity Scale, 1978," UNESCO Technical Papers in Marine Science, No. 37, p. 144 (1981).

Appendix A

GEOTRACES 2011: CTD Temperature and Conductivity Corrections Summary

	ITS-90 Temperatu	ure Coefficients	Conductivity C	Coefficients
Sta/	corT = tp1*	corP + t0	corC = cp1*	corP + c0
Cast	tp1	tO	cp1	c0
001/02	-9.4431e-08	-0.000644	3.38690e-07	-0.000259
001/04	-9.4431e-08	-0.000628	3.38690e-07	-0.000259
001/06	-9.4431e-08	-0.000621	3.38690e-07	-0.000259
001/07	-9.4431e-08	-0.000614	3.38690e-07	-0.000259
001/09	-9.4431e-08	-0.000604	3.38690e-07	-0.000259
001/10	-9.4431e-08	-0.000599	3.38690e-07	-0.000259
002/02	-9.4431e-08	-0.000589	3.38690e-07	-0.000259
002/05	-9.4431e-08	-0.000570	3.38690e-07	-0.000259
002/06	-9.4431e-08	-0.000565	3.38690e-07	-0.000259
003/02	-9.4431e-08	-0.000535	3.38690e-07	-0.000259
003/05	-9.4431e-08	-0.000511	3.38690e-07	-0.000259
003/06	-9.4431e-08	-0.000504	3.38690e-07	-0.000259
004/01	-9.4431e-08	-0.000470	3.38690e-07	-0.000259
004/03	-9.4431e-08	-0.000458	3.38690e-07	-0.000259
004/04	-9.4431e-08	-0.000450	3.38690e-07	-0.000259
005/02	-9.4431e-08	-0.000430	3.38690e-07	-0.000259
006/03	-9.4431e-08	-0.000411	3.38690e-07	-0.000259
006/06	-9.4431e-08	-0.000385	3.38690e-07	-0.000259
006/08	-9.4431e-08	-0.000379	3.38690e-07	-0.000259
008/02	-9.4431e-08	-0.000342	3.38690e-07	-0.000259
008/04	-9.4431e-08	-0.000332	3.38690e-07	-0.000259
008/06	-9.4431e-08	-0.000322	3.38690e-07	-0.000259
010/02	-9.4431e-08	-0.000238	3.38690e-07	-0.000259
010/04	-9.4431e-08	-0.000227	3.38690e-07	-0.000259
010/06	-9.4431e-08	-0.000217	3.38690e-07	-0.000259
010/08	-9.4431e-08	-0.000198	3.38690e-07	-0.000259
010/10	-9.4431e-08	-0.000193	3.38690e-07	-0.000259
010/12	-9.4431e-08	-0.000186	3.38690e-07	-0.000259
011/02	-9.4431e-08	-0.000156	3.38690e-07	-0.000259
012/02	-9.4431e-08	-0.000127	3.38690e-07	-0.000259
012/04	-9.4431e-08	-0.000116	3.38690e-07	-0.000259
012/06	-9.4431e-08	-0.000104	3.38690e-07	-0.000259
012/08	-9.4431e-08	-0.000089	3.38690e-07	-0.000259
012/10	-9.4431e-08	-0.000084	3.38690e-07	-0.000259
012/12	-9.4431e-08	-0.000073	3.38690e-07	-0.000259
013/02	-9.4431e-08	-0.000045	3.38690e-07	-0.000259
014/02	-9.4431e-08	-0.000018	3.38690e-07	-0.000259
014/04	-9.4431e-08	-0.000009	3.38690e-07	-0.000259
014/06	-9.4431e-08	-0.000002	3.38690e-07	-0.000259
015/02	-9.4431e-08	0.000033	3.38690e-07	-0.000259
016/02	-9.4431e-08	0.000059	3.38690e-07	-0.000259
016/04	-9.4431e-08	0.000075	3.38690e-07	-0.000259

t0 cd t0 000086 3.3 000095 3.3	orC = cp1∗corP cp1 8690e-07 -0.	2 + c0 c0
t0 000086 3.3 000095 3.3	cp1 8690e-07 -0.	c0
000086 3.3 000095 3.3	8690e-07 -0.	
000095 3.3		000259
00100 22	8690e-07 -0.	000259
00100 3.3	8690e-07 -0.	000259
00103 3.3	8690e-07 -0.	000259
00125 3.3	8690e-07 -0.	000259
000146 3.3	8690e-07 -0.	000259
00155 3.3	8690e-07 -0.	000259
000166 3.3	8690e-07 -0.	000259
000199 3.3	8690e-07 -0.	000259
00218 3.3	8690e-07 -0.	000259
00228 3.3	8690e-07 -0.	000259
00240 3.3	8690e-07 -0.	000259
00256 3.3	8690e-07 -0.	000259
00261 3.3	8690e-07 -0.	000259
00272 3.3	8690e-07 -0.	000259
000304 3.3	8690e-07 -0.	000259
000331 3.3	8690e-07 -0.	000259
000341 3.3	8690e-07 -0.	000259
000351 3.3	8690e-07 -0.	000259
00387 3.3	8690e-07 -0.	000259
000407 3.3	8690e-07 -0.	000259
00446 2.2	86000-07 -0	000259
00416 3.3	00906-07 -0.	200200
	000133 3.3 000218 3.3 000228 3.3 000240 3.3 000256 3.3 000272 3.3 000304 3.3 000331 3.3 000351 3.3 000387 3.3 000407 3.3	000133 3.38690e-07 -0. 000218 3.38690e-07 -0. 000228 3.38690e-07 -0. 000240 3.38690e-07 -0. 000256 3.38690e-07 -0. 000261 3.38690e-07 -0. 000272 3.38690e-07 -0. 000304 3.38690e-07 -0. 000331 3.38690e-07 -0. 000351 3.38690e-07 -0. 000387 3.38690e-07 -0. 000407 3.38690e-07 -0. 000416 3.38690e-07 -0.

Appendix B

Summary of GEOTRACES 2011 CTD Oxygen Time Constants (time constants in seconds)

Pressure	Temperature		Pressure	O2 Gradient	Velocity	Thermal
Hysteresis (τ_h)	Long(τ_{Tl})	Short(τ_{Ts})	Gradient (τ_p)	(au_{og})	(τ_{dP})	Diffusion (τ_{dT})
150.0	300.0	2.0	0.50	8.00	0.00	275.0

GEOTRACES 2011: Conversion Equation Coefficients for CTD Oxygen (refer to Equation 1.6.4.0)

Sta/	O_c Slope	Offset	P _h coeff	T ₁ coeff	T _s coeff	P _l coeff	$\frac{dO_c}{dt}$ coeff	$\frac{dP}{dt}$ coeff	T_{dT} coeff
Cast	(<i>c</i> ₁)	(c_3)	(<i>c</i> ₂)	(C4)	(c ₅)	(<i>c</i> ₆)	(C ₇)	(<i>c</i> ₈)	(C ₉)
001/02	5.307e-04	-0.280	0.123	1.186e-02	-1.344e-02	9.469e-05	2.547e-03	0	0.007120
001/04	5.307e-04	-0.280	0.123	1.186e-02	-1.344e-02	9.469e-05	2.547e-03	0	0.007120
001/06	5.812e-04	-0.385	0.060	2.224e-02	-2.500e-02	1.226e-04	3.251e-03	0	0.012562
001/07	1.800e-04	-0.115	4.213	6.807e-02	-1.163e-02	-8.203e-05	1.042e-03	0	-0.036245
001/09	6.319e-04	-0.279	-1.478	-1.733e-02	4.553e-03	2.442e-04	4.002e-03	0	-0.002805
001/10	7.057e-04	-0.430	-0.488	2.809e-03	-1.657e-02	6.561e-05	1.975e-03	0	0.012886
002/02	4.822e-04	-0.206	0.069	-3.766e-03	2.002e-03	1.161e-04	-2.902e-03	0	-0.004414
002/05	2.626e-04	-0.170	7.186	5.691e-02	-2.069e-02	-9.903e-04	3.141e-03	0	-0.019929
002/06	8.406e-05	-0.043	9.024	8.060e-02	5.220e-03	-5.925e-04	1.267e-03	0	-0.073472
003/02	5.031e-04	-0.231	0.437	1.364e-03	-1.533e-03	-3.023e-05	1.079e-03	0	-0.006319
003/05	5.148e-04	-0.256	0.485	4.714e-03	-5.511e-03	4.544e-06	-4.506e-03	0	-0.001009
003/06	7.322e-04	-0.343	-0.595	-3.200e-03	-1.210e-02	-7.084e-06	2.325e-03	0	0.018321
004/01	3.857e-04	-0.128	0.097	6.861e-03	1.522e-03	1.118e-04	1.184e-03	0	-0.009109
004/03	5.488e-04	-0.319	0.309	1.250e-02	-1.369e-02	4.996e-05	-3.389e-03	0	0.006702
004/04	4.228e-04	-0.118	-0.477	1.227e-03	2.163e-03	1.793e-04	2.655e-03	0	-0.000059
005/02	3.275e-04	-0.206	2.122	1.359e-02	8.562e-03	-1.756e-04	-5.252e-03	0	-0.031078
006/03	5.098e-04	-0.284	0.097	1.317e-02	-1.234e-02	1.250e-04	-4.468e-03	0	-0.004818
006/06	4.408e-04	-0.220	0.640	-2.590e-03	8.965e-03	3.735e-05	-1.946e-03	0	-0.021980
006/08	4.875e-04	-0.202	-0.839	-6.835e-03	7.115e-03	3.286e-04	1.058e-03	0	-0.000838
008/02	4.770e-04	-0.330	0.736	1.753e-02	-9.860e-03	-7.475e-06	-1.977e-03	0	-0.018516
008/04	3.985e-04	-0.294	1.280	2.901e-02	-1.270e-02	-6.355e-05	-7.790e-03	0	-0.020884
008/06	5.386e-04	-0.332	0.152	2.531e-03	-2.294e-03	1.106e-04	-4.558e-03	0	-0.001037
010/02	5.011e-04	-0.240	-0.025	5.380e-03	-4.776e-03	1.361e-04	2.572e-03	0	0.000470
010/04	5.160e-04	-0.254	0.212	-1.973e-03	1.763e-03	7.531e-05	-4.861e-03	0	-0.001821
010/06	3.895e-04	-0.196	0.560	6.353e-03	5.249e-03	1.129e-04	1.188e-03	0	-0.016832
010/08	5.181e-04	-0.253	0.419	-1.746e-03	1.242e-03	1.850e-05	4.891e-04	0	-0.003675
010/10	5.068e-04	-0.240	0.146	-3.392e-03	3.447e-03	9.400e-05	-3.792e-03	0	-0.001658
010/12	4.691e-04	-0.224	-0.032	1.800e-03	1.425e-03	1.686e-04	4.710e-04	0	-0.006538
011/02	4.960e-04	-0.252	1.001	-4.116e-03	5.959e-03	-9.718e-05	-1.624e-03	0	-0.010196
012/02	5.177e-04	-0.252	0.009	-7.074e-04	1.770e-04	1.259e-04	2.455e-03	0	0.001696
012/04	5.117e-04	-0.261	0.132	-1.038e-03	1.588e-03	1.042e-04	-2.978e-04	0	-0.002720
012/06	3.770e-04	-0.177	0.339	4.079e-03	8.038e-03	1.497e-04	-3.917e-03	0	-0.018656
012/08	2.253e-04	-0.128	2.062	2.329e-02	1.165e-02	2.458e-06	-3.017e-03	0	-0.048678
012/10	4.987e-04	-0.231	0.072	-2.319e-03	3.207e-03	1.165e-04	1.838e-03	0	-0.000282
012/12	5.167e-04	-0.260	0.251	-1.325e-03	1.594e-03	6.807e-05	1.443e-03	0	-0.005893
013/02	1.098e-03	-0.307	-1.814	-3.762e-02	3.832e-03	7.828e-05	-8.878e-05	0	0.022364

Sta/	O _c Slope	Offset	P _h coeff	T ₁ coeff	T _s coeff	P _l coeff	$\frac{dO_c}{dt}$ coeff	$\frac{dP}{dt}$ coeff	T _{dT} coeff
Cast	(<i>c</i> ₁)	(c_3)	(<i>c</i> ₂)	(c_4)	(c_{5})	(<i>c</i> ₆)	(C ₇)	(<i>c</i> ₈)	(<i>c</i> ₉)
014/02	4.165e-04	-0.215	0.686	3.085e-03	5.948e-03	5.392e-05	1.200e-03	0	-0.018545
014/04	3.716e-04	-0.213	0.992	9.015e-03	5.491e-03	8.196e-05	-7.981e-04	0	-0.018181
014/06	5.112e-04	-0.227	0.299	-2.254e-03	1.822e-03	4.650e-05	3.832e-03	0	0.000749
015/02	3.435e-04	-0.192	1.044	1.381e-02	3.560e-03	1.059e-04	2.503e-03	0	-0.016679
016/02	4.955e-04	-0.217	0.095	-6.348e-03	6.827e-03	1.063e-04	-1.251e-03	0	-0.006571
016/04	5.225e-04	-0.225	0.280	-3.440e-05	-1.744e-03	4.207e-05	-5.626e-03	0	0.007437
016/06	3.495e-04	-0.157	1.074	7.457e-03	7.184e-03	-1.018e-05	9.900e-04	0	-0.024677
016/08	5.642e-04	-0.241	-0.131	-2.679e-03	-2.251e-03	8.780e-05	3.659e-03	0	0.008115
016/10	4.218e-04	-0.207	0.754	7.444e-03	6.574e-04	2.908e-05	1.283e-03	0	-0.007976
016/11	6.535e-04	-0.267	-0.661	-1.321e-02	2.233e-03	1.714e-04	6.896e-04	0	0.015335
017/02	4.472e-04	-0.241	0.941	4.576e-03	2.196e-03	-2.454e-05	6.442e-04	0	-0.011364
018/02	5.562e-04	-0.305	-0.011	-5.165e-03	3.175e-03	1.543e-04	-9.023e-04	0	-0.003869
018/04	5.065e-04	-0.227	0.143	-2.943e-03	2.919e-03	9.044e-05	6.947e-04	0	0.000053
018/06	2.754e-04	-0.090	2.416	2.108e-02	8.744e-04	-1.801e-04	-6.205e-04	0	-0.015463
019/02	1.383e-03	-0.854	-1.296	-3.535e-02	-2.115e-04	2.323e-04	-5.782e-04	0	0.019778
020/02	2.492e-04	-0.131	1.865	2.829e-02	1.065e-03	6.460e-05	3.031e-03	0	-0.020324
020/04	5.028e-04	-0.229	0.074	-7.308e-04	1.150e-03	1.132e-04	3.118e-03	0	0.000431
020/06	5.892e-04	-0.177	-1.971	-1.316e-02	4.357e-03	3.648e-04	1.758e-03	0	0.013938
020/08	4.707e-04	-0.191	-0.265	-2.512e-03	4.371e-03	2.105e-04	3.635e-03	0	0.001636
020/09	5.106e-04	-0.250	0.081	-5.168e-03	5.323e-03	1.168e-04	-9.869e-03	0	-0.009098
020/11	5.116e-04	-0.277	0.035	-7.243e-03	8.868e-03	1.457e-04	3.809e-04	0	-0.018095
021/02	1.867e-04	-0.084	3.164	5.115e-02	-1.172e-02	-9.497e-06	5.608e-03	0	0.004357
022/02	8.321e-04	-0.347	-1.173	-2.414e-02	3.657e-03	1.849e-04	3.689e-03	0	0.017924
022/04	5.087e-04	-0.272	0.033	-2.943e-03	4.554e-03	1.456e-04	-4.829e-04	0	-0.019641
022/06	8.321e-04	-0.347	-1.173	-2.414e-02	3.657e-03	1.849e-04	3.689e-03	0	0.017924
023/02	2.365e-04	-0.085	2.675	2.056e-02	8.579e-03	-6.397e-05	1.887e-03	0	-0.006819
024/02	3.015e-04	-0.101	2.438	1.712e-03	1.733e-02	-1.628e-04	-5.769e-03	0	0.007132
024/04	5.185e-04	-0.234	0.159	-4.998e-03	4.232e-03	8.141e-05	7.513e-03	0	-0.005013
024/06	5.143e-04	-0.238	0.077	-1.511e-02	1.496e-02	6.790e-05	3.137e-04	0	-0.025253

Appendix C

GEOTRACES 2011: Bottle Quality Comments

Comments from the Sample Logs and the results of SIO/STS's data investigations are included in this report. Units stated in these comments are degrees Celsius for temperature, micromoles per kilogram for oxygen and micromoles per liter for Silicate, Nitrate, Nitrite, and Phosphate. The sample number is the cast number times 100 plus the bottle number. Investigation of data may include comparison of bottle salinity and oxygen data with CTD data, review of data plots of the station profile and adjoining stations, and re-reading of charts (i.e. nutrients).

Station	n Sample	e Quality		
/Cast	No.	Property	Code	Comment
1/2	201	po4	3	value is high compared to cast and similar depths on other casts, no
		•		analytical errors noted.
1/2	204	bottle	2	Lanyard spigot slow and weeps after sampling started.
1/2	206	bottle	9	Bottle did not trip. Lanyard caught on 2 latches.
1/2	207	bottle	2	Bottom cap weeping after sampling started. Probably due to stiff/hard o- rings.
1/4	407	salt	3	Salt value low compared to CTDS1/CTDS2 at 2040db, code questionable.
1/4	410	salt	2	Bottle salt value agrees with CTD, water column and adjacent parameters, code acceptable. Analyst: SaltBtl_22, Rim chip - seal does NOT appear to be compromised. Old injury, not from this cruise.
1/4	411	salt	2	Bottle salt value agrees with CTD, water column and adjacent parameters, code acceptable. Analyst: SaltBtl_23, readings kept climbing, cause unknown. Salt value reasonable for water depth (1510m) and agrees with CTDS1/CTDS2.
1/6	601	o2	5	Sample lost. Analytical program froze, manual system reboot.
1/7	707	salt	2	Bottle salt value agrees with CTD, water column and adjacent parameters, code acceptable. Analyst: SaltBtl_7 got distracted and pulled sample bottle before second reading. No reason to suspect reading otherwise
1/7	711	reft	3	SBE35RT +0.013 vs CTDT: taken at top of thermocline, in a gradient. Code guestionable.
1/7	712	salt	3	Salt value -0.025 vs CTDS, at small gradient in mixed layer. code questionable.
1/9	906	bottle	9	Bottle did not trip: Loading error, lanyard caught on 2 latches.
1/9	907	reft	3	SBE35RT -0.011 vs CTDT, reading unstable: taken in a small gradient. Code questionable.
1/9	911	reft	3	SBE35RT +0.015 vs CTDT, reading unstable, taken in a gradient. Code guestionable.
1/10	1005	reft	3	unstable SBE35T reading, taken in a small gradient. Code questionable.
1/10	1006	reft	3	unstable SBE35T reading, taken in a small gradient. Code questionable.
1/10	1011	salt	3	Salt value +0.035 vs CTDS, middle of high gradient. Code questionable.
2/2	211	salt	2	Bottle salt compares well with CTD, water column and adjacent parameters, code acceptable. Analyst: SaltBtl_11: Rim chip, Seal is NOT compromised, did not notice it before but could be old injury as it is small.
2/5	506	reft	3	SBE35T -0.015/-0.020 vs CTDT1/CTDT2; unstable SBE35T reading. Code questionable.
2/5	507	o2	2	Sample run out of order. Flasks match sample log sheet, however values more closely match water column when switched with 508 flask 882.

Statior	n Sample	e Quality		
/Cast	No.	Property	Code	Comment
2/5	508	o2	2	Sample run out of order. Flasks match sample log sheet, however values
0/5	500	. 0	-	more closely match water column when switched with 507 flask 886.
2/5	509	02	5	Sample accidentally destroyed.
2/5	511	salt	2	Bottle salt compares well with CTD, water column and adjacent parameters, code acceptable. Analyst: SaltBtl_23: thimble came out with cap, probable
2/6	605	salt	2	Bottle salt compares well with CTD, water column and adjacent parameters, code acceptable. Analyst: SaltBtl_29: first reading anomalous, suspect air bubble in coil arm.
2/6	608	reft	3	Somewhat unstable SBE35T reading in gradient. Code questionable.
2/6	608	salt	3	Salt value -0.025 vs CTDS, high gradient region. Code questionable.
2/6	610	reft	3	Unstable SBE35T reading in gradient. Code guestionable.
2/6	610	salt	3	Salt value +0.04 vs CTDS, bottom of mixed laver. Code questionable.
3/2	206	salt	2	Analyst: SaltBtl 6: thimble came out with cap. Readings erratic.
3/2	207	bottle	2	Guide pin came out of spigot stem, replaced after sampling.
3/2	209	reft	3	very unstable SBE35T reading in gradient. Code guestionable.
3/5	501	salt	3	Bottle salt value is +0.020 vs. CTD, high for low gradient region, code guestionable.
3/5	508	po4	2	Analyst: po4 value is slightly high, no analytical errors noted.
3/6	607	o2	2	Bottle o2 value +0.0.242ml/l vs. CTD. High gradient region, water column
3/6	609	o2	2	changing rapidly in Gulf stream. Value matches up-trace. Code acceptable. Bottle o2 value +0.453ml/l vs. CTD. High gradient region, water column changing rapidly in Gulf stream. Value matches up-trace. Code acceptable
3/6	609	salt	3	Bottle salt value is +0.040 vs. CTD, in high gradient region. Code guestionable.
4/1	101	reft	3	SBE35T +0.014 vs CTDT; unstable SBE35T reading in a small gradient. Code guestionable.
4/1	103	reft	3	SBE35T -0.015 vs CTDT; unstable SBE35T reading in a gradient. Code guestionable.
4/1	104	bottle	9	Bottle 4 did not trip, cocked on wrong latch.
4/1	107	reft	3	SBE35T -0.025/-0.035 vs CTDT1/CTDT2; unstable SBE35T reading. Code questionable
4/1	107	salt	2	Bottle salt value agrees with CTD, water column and adjacent parameters.
4/1	112	salt	2	Bottle salt value agrees with CTD, water column and adjacent parameters.
4/3	302	salt	4	Bottle salt value high vs CTDS1/CTDS2 for low gradient region of water column, code questionable. Analyst: SaltBtl_14; thimble came out with cap, initial large jump, suspect contamination.
4/4	408	02	2	Possible bubble in o2 flask ANALYST: O2 values nominal
5/2	202	reft	3	SBE35T -0.006 vs CTDT; somewhat high for deeper reading. Code
5/2	209	o2	2	questionable. Bottle o2 value -0.267ml/l less than CTD. Tripped in high gradient region,
5/2	210	reft	3	value matches water column trend. Code acceptable. SBE35T -0.030/-0.025 vs CTDT1/CTDT2; unstable SBE35T reading. Code
E/0	040	aalt	0	questionable.
5/2	213	salt	2	Sunace Fump sample.
0/3	305	sait	2	acceptable. Analyst: SaltBtl_5; thimble came out with cap - reading erratic.
6/3	306	salt	3	Deep salinity +0.005 vs CTD, code questionable.

Statior	n Sample	e Quality		
/Cast	No.	Property	Code	Comment
6/6	602	salt	2	Bottle value agrees with CTD values and water column trend, code
				acceptable. Analyst: SaltBtl_14; thimble came out with cap - probable
				contamination.
6/6	606	reft	3	SBE35T +0.012 vs CTDT; unstable SBE35T reading, in a gradient. Code
0.40	~~-			questionable.
6/6	607	salt	3	bottle salt +0.06 vs CTDS, in gradient. Code questionable.
6/6	608	salt	3	bottle salt -0.055 vs CTDS, in gradient. Code questionable.
6/8	807	rett	3	guestionable.
8/2	206	salt	2	Bottle salt value agrees with CTD and water column profile, code acceptable.
0/4	404	aalt	0	Analyst: SaitBti_6: thimble came out with cap - probable contamination.
0/4	404	San	Ζ	Analyst: SaltBtl_16: thimble came out with cap, possible contamination.
8/4	408	o2	2	Bottle o2 value 0.371 ml/l less vs CTD. Value matches trend in water column
				and up-trace, in high gradient region. Code acceptable.
8/6	601	bottle	4	salt, o2, CFC and nutrient values indicate this bottle probably tripped at the
				same depth as shallowest bottle (1500m). Possibly a lanyard hangup until
				last trip (niskins 1 and 12 are next to each other on rosette). Code as tripped
0.10	004	•		at different depth than expected.
8/6	601	no2	4	deepest and shallowest (1500m) nutrient values similar: see bottle comment.
0/0	004	n n 2	4	Code bad.
8/6	601	103	4	Code bad.
8/6	601	o2	4	deepest o2 value aligns with CTDO, but o2 draw temp high and deepest and
				shallowest o2 values match; see bottle comment. Code bad.
8/6	601	po4	4	deepest and shallowest (1500m) nutrient values similar: see bottle comment.
				Code bad.
8/6	601	salt	4	deepest salt value is +0.11 vs CTDS: matches 1500m salt value; see bottle
0/0	CO4	a:a2	4	comment. Code bad.
8/6	601	SI03	4	Code bad.
8/6	604	po4	3	value is high and does not match GT-C cast values for similar depth
8/6	604	salt	4	Bottle salt high for CTD trend in low gradient region, code questionable.
8/6	607	bottle	3	Bottle 7 bottom cap jarred loose during recovery, top cap did not seal: shut
				on bottle 6 lanyard line. Broke pressure seal and allowed leaking.
8/6	607	no2	4	water likely not from proper depth due to lanyard issue
8/6	607	no3	4	value low, water likely not from proper depth due to lanyard issue
8/6	607	02	4	Bottle o2 value low, leaky niskin. Code bad.
8/6	607	po4	4	value low, water likely not from proper depth due to lanyard issue
8/6	607	salt	4	salt value high, leaky niskin. Code bad.
8/6	607	SIO3	4	Value low, water likely not from proper depth due to lanyard issue
8/6	608	salt	4	Bottle sait value does not agree with CTD profile. Analyst: SaitBit_32: thimble
10/2	202	roft	2	SPE25T 0.015 vs CTDT: unstable SPE25T reading in a gradient.
10/2	202	IGIL	5	questionable
10/4	405	bottle	3	bottom cap leak after sampling started, could not make it stop. Samples
, .	100		5	taken asap, shutting vent between samples. A piece of plastic debris was
				later found in lower cap o-ring.
10/4	409	no2	3	value high compared to casts at overlapping depths, no analytical errors
				noted
10/6	605	bottle	2	Niskin s/n 5 replaced from spares before cast (using Niskin s/n 15).

Statior	n Sample	e Quality		
/Cast	No.	Property	Code	Comment
10/6	609	reft	3	SBE35T +0.06/+0.05 vs CTDT1/CTDT2; very unstable SBE35T reading, in a gradient. Code guestionable.
10/8	804	salt	2	Bottle salt value agrees with CTD values and water column trend, code acceptable. Analyst: SaltBtl 16: thimble came out with cap - readings erratic.
10/8	811	salt	2	Bottle salt value agrees with CTD values and water column trend, code acceptable Analyst: SaltBtl 23: thimble came out with cap readings erratic
10/10	1009	salt	3	Deep salinity value +0.007 vs CTDS: code guestionable.
10/12	1202	o2	2	Particulates in o2 flask.
10/12	1211	reft	3	SBE35T -0.065/-0.060 vs CTDT1/CTDT2; unstable SBE35T reading. Code guestionable.
11/2	213	salt	2	Analyst: Salt 13 is surface pumped sample associated with cast
12/2	210	reft	3	SBE35T -0.06 vs CTDT; very unstable SBE35T reading, in a gradient. Code questionable.
12/4	403	salt	3	Bottle salt value low vs. CTD in low gradient region, but falls with in water column trend, code questionable.
12/4	406	salt	3	Bottle salt value low vs. CTD in low gradient region, but falls with in water column trend, code questionable.
12/4	412	salt	2	Bottle value agrees closely with CTD, water column trend and adjacent
				probably contamination.
12/6	613	salt	2	Bottle value agrees closely with CTD, water column trend and adjacent
				parameters, code acceptable. ANALYST: Is surface pumped sample
				associated with cast.
13/2	213	salt	2	ANALYST: 13 is surface pumped sample associated with cast.
14/2	210	reft	3	SBE35T +0.01 vs CTDT; unstable SBE35T reading, in a gradient. Code
1.1/0	044		2	questionable.
14/2	211	ren	3	SBE351 +0.024 vs CTDT; unstable SBE351 reading, in a gradient. Code
14/4	403	salt	4	Bottle value high for CTD in transition region. Code had due to analyst
	400	Juit	-	remark. ANALYST: thimble came out with cap - probably contamination.
14/4	409	o2	2	OT 0.5538 Abnormal finish first titrate. No slope. After back titration good
14/6	611	bottle	2	vent possibly not shut tight.
14/6	612	salt	2	Bottle value agrees with CTD profile, code acceptable. ANALYST: thimble
				came out with cap, possible contamination.
16/4	406	salt	2	Bottle value higher than general trend vs. CTD, however still with in
				acceptable limits. ANALYST: Salt 6; Thimble came out with cap, readings erratic.
16/6	613	salt	2	0013: Salt/niskin 13, surface pumped sample associated with cast.
16/11	1107	salt	2	Bottle salt values agree with CTD trend. ANALYST: SaltBtls 19-21
				(samps.1107,1108,1110) placed in crate in wrong order, not noticed until
				SaltBti 19 (samp.1110) was being analyzed. Samples collected in correct
16/11	1108	calt	2	Bottle salt values agree with CTD trend ANALVST: SaltBils 10-21
10/11	1100	San	2	(samps 1107 1108 1110) placed in crate in wrong order, not noticed until
				SaltBtl 19 (samp.1110) was being analyzed. Samples collected in correct
				order. (Data file corrected.)
16/11	1110	salt	2	Bottle salt values agree with CTD trend. ANALYST: SaltBtls 19-21 placed in
				crate in wrong order, not noticed until SaltBtl 19 (samp.1110) was being
				analyzed. Samples collected in correct order. (Data file corrected.)
17/2	213	salt	2	ANALYST: Salt 13 is surface pump sample associated with cast.

Station	n Sample	e Quality		
/Cast	No.	Property	Code	Comment
18/2	207	reft	3	SBE35 and CTDT2 vs CTDT1 very different through high gradient. Code guestionable
18/2	207	salt	3	Bottle salt value unstable through high gradient. Code guestionable.
18/6	609	reft	3	SBE35T +0.027 vs CTDT; very unstable SBE35T reading in gradient. Code
19/2	205	o2	2	Bottle value aligns to CTD profile, code acceptable. 1756 stopper in 1730
19/2	206	o2	2	Bottle value aligns to CTD profile, code acceptable. 1730 stopper in 1756
19/2	213	salt	2	Value is acceptable. ANALYST: Salt 13 is surface pumped sample associated with cast
20/2	201	reft	3	Deep SBE35T -0.008 vs CTDT; unstable SBE35T reading. Code
20/2	203	bottle	2	735m bottle accidentally tripped 5m too deep, on-the-fly while winch slowing
20/2	203	reft	3	SBE35T, CTDT1, CTDT2 all disagree; very unstable SBE35T reading on-the-
20/2	209	reft	З	very unstable SBE35T reading in gradient. Code questionable
20/2	210	reft	3	SBE35T CTDT1 CTDT2 all disagree: unstable SBE35T reading in gradient
20/2	210	TOR	Ŭ	Code questionable
20/6	602	bottle	2	second bottle fired at 735m unintentionally, while still stopped for sample 601.
20/6	613	salt	2	Salt 13, is surface pumped sample associated with cast.
20/8	805	reft	3	very unstable SBE35T reading in gradient. Code questionable
20/8	811	reft	3	SBE35T CTDT1 CTDT2 all disagree: very unstable SBE35T reading in
20/0	0	lon	U	gradient Code questionable
20/9	908	salt	3	Deep salinity is +0.008 vs CTDS: code questionable
20/11	1109	reft	3	SBE35T CTDT1 CTDT2 all disagree: in gradient. Code questionable
20/11	1111	reft	3	SBE35T +0.028 vs CTDT; unstable SBE35T reading in gradient. Code
21/2	204	hottle	2	"Bottle 4, 5 or 6 bottom can was popped open by tag line during recovery:
	204	Dottio	2	difficult to see which bottle was snanned "
21/2	205	bottle	2	"Bottle 4, 5 or 6 bottom cap was popped open by tag line during recovery;
				difficult to see which bottle was snapped."
21/2	205	reft	3	SBE35T, CTDT1, CTDT2 all disagree; very unstable SBE35T reading. Code guestionable.
21/2	206	bottle	2	Bottle 4, 5 or 6 bottom cap was popped open by tag line during recovery;
21/2	211	reft	3	SBE35T +0.018 vs CTDT; unstable SBE35T reading in gradient. Code
22/2	202	aalt	2	questionable.
22/2	203	salt	3	Bottle salt value high by 50 units in high gradient region. Code questionable.
22/2	208	salt	3	Bottle salt value low by 30 units in high gradient region. Code questionable.
22/6	613	salt	2	Sait 13 is surface pumped sample associated with cast.
23/2	211	rett	3	SBE351, CIDI1, CIDI2 all disagree; unstable SBE35R1 reading in
00/0	040	aalt	~	gradient. Code questionable.
23/2	213	salt	2	AIVALYSI: Sait 13 is surface pumped sample associated with cast.
24/2	206	sait	3	Bottle sait value -0.040 with CID in high gradient region. Code questionable.
24/2	208	rent	3	SBE351, CIDI1, CIDI2 all disagree; in gradient. Code questionable.
24/2	209	rett	3	gradient. Code questionable.

Appendix D

GEOTRACES 2011: Pre-Cruise Sensor Laboratory Calibrations

SIOR CTD 831 Sensors - Table of Contents					
CTD	Manufacturer	Serial	Appendix D Page		
Sensor	and Model No.	Number	(Un-Numbered)		
*PRESS (Pressure)	Digiquartz 401K-105	98627	1-3		
*T1 (Primary Temperature)	Sea-Bird SBE3plus	03P-4907	4		
*C1 (Primary Conductivity)	Sea-Bird SBE4C	04-2112	5		
*O2 (Dissolved Oxygen)	Sea-Bird SBE43	43-0857	6		
T2 (Secondary Temperature)	Sea-Bird SBE3plus	03P-4138	7		
C2 (Secondary Conductivity)	Sea-Bird SBE4C	04-2659	8		
*TRANS (Transmissometer)	WETLabs C-Star	CST-491DR	9		
*REFT (Reference Temperature)	Sea-Bird SBE35	3528706-0035	10		

* data reported for these sensors during GEOTRACES 2011

Pressure Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 0831 CALIBRATION DATE: 25-OCT-2011 Mfg: SEABIRD Model: 09P CTD Prs s/n:

C1= -4.346480E+4 C2= -2.379132E-1 C3= 1.292515E-2 D1= 3.298162E-2 D2= 0.000000E+0 T1= 3.004630E+1 T2= -4.377857E-4 T3= 3.900833E-6 T4= 4.644562E-9 T5= 0.000000E+0 AD590M= 1.28916E-2 AD590B= -8.23481E+0 Slope = 1.0000000E+0 Offset = 0.0000000E+0

Calibration Standard: Mfg: RUSKA Model: 2400 s/n: 34336 t0=t1+t2*td+t3*td*td+t4*td*td*td w = 1-t0*t0*f*f Pressure = (0.6894759*((c1+c2*td+c3*td*td)*w*(1-(d1+d2*td)*w)-14.7)

SBE9		SBE9	Ruska-SBE9	Ruska-SBI	59	
Freq	Ruska	New_Coefs	Prev_Coefs	New_Coefs	s Tprs	Bath_Temp
33298.121	0.18	0.39	-0.25	-0.21	29.01	27.401
33499.871	364.98	364.88	0.06	0.10	29.01	27.401
33689.143	709.16	709.10	0.03	0.06	29.01	27.401
33877.201	1053.33	1053.29	0.02	0.04	29.01	27.401
34064.133	1397.59	1397.59	-0.01	0.01	29.01	27.401
34434.505	2086.07	2086.10	-0.05	-0.03	29.02	27.401
34800.405	2774.62	2774.66	-0.08	-0.04	29.02	27.401
35161.942	3463.25	3463.18	-0.00	0.07	29.02	27.401
34800.418	2774.62	2774.68	-0.10	-0.06	29.02	27.401
34434.507	2086.07	2086.11	-0.06	-0.04	29.01	27.401
34064.140	1397.59	1397.60	-0.02	-0.01	29.01	27.401
33877.214	1053.33	1053.32	-0.00	0.01	29.01	27.401
33689.152	709.16	709.12	0.02	0.04	29.01	27.401
33499.883	364.98	364.90	0.04	0.07	29.01	27.401
33294.784	0.18	0.40	-0.26	-0.22	16.98	15.945
33496.496	364.98	364.89	0.07	0.08	16.99	15.946
33685.734	709.16	709.11	0.05	0.05	17.01	15.947
33873.763	1053.33	1053.30	0.04	0.03	17.03	15.947
34060.662	1397.59	1397.58	0.03	0.01	17.06	15.948
34430.965	2086.07	2086.11	-0.01	-0.03	17.07	15.948
34796.809	2774.62	2774.68	-0.04	-0.06	17.08	15.948
35158.313	3463.25	3463.25	-0.01	-0.00	17.11	15.948
35515.603	4151.95	4151.83	0.08	0.11	17.12	15.948
35158.329	3463.25	3463.26	-0.02	-0.01	17.14	15.948
34796.830	2774.62	2774.66	-0.03	-0.05	17.16	15.948

Pressure Calibration Report STS/ODF Calibration Facility

34431.025	2086.07	2086.15	-0.05	-0.08	17.17	15.948
34060.710	1397.59	1397.59	0.02	0.00	17.19	15.948
33873.831	1053.33	1053.31	0.02	0.02	17.21	15.948
33685.801	709.16	709.10	0.06	0.06	17.23	15.949
33496.575	364.98	364.88	0.07	0.09	17.24	15.949
33291.668	0.18	0.40	-0.28	-0.22	8.60	7.109
33493.357	364.98	364.90	0.05	0.07	8.60	7.109
33682.566	709.16	709.11	0.04	0.04	8.60	7.109
33870.564	1053.33	1053.30	0.05	0.03	8.60	7.109
34057.419	1397.59	1397.56	0.07	0.03	8.60	7.109
34427 668	2086 07	2086 06	0 08	0 01	8 60	7 109
34793 470	2774 62	2774 64	0.05	-0.03	8 60	7 109
35154 933	3463 25	3463 24	0.09	0.01	8 60	7 109
35512 209	4151 95	4151 87	0 14	0.07	8 60	7 109
35865 447	4840 70	4840 58	0 15	0 12	8 62	7 109
36214 911	5529 51	5529 66	-0.16	-0.15	8 63	7.109
35865 475	4840 70	4840 65	0.10	0.15	8 60	7.109
35512 236	4151 95	4151 92	0.00	0.03	8 60	7.109
35154 979	3463 25	3463 32	0.00	-0.02	8 60	7.109
34793 512	2774 62	2774 72	-0.03	-0.11	8 60	7.109
34/27 700	2086 07	2096 14	-0.00		8.60	7.109
34427.709	1207 50	1207 50	-0.00	-0.07	8 60	7.109
22870 560	1052 22	1053 30	0.05	0.00	8 60	7.109
22602 EEA	1055.55 700 16	700 00	0.00	0.03	0.00	7.109
22/02 2//	709.10	709.09	0.07	0.00	0.00	7.109
22207 600	0 10	0 40	0.00	0.10	0.00	1 207
33407.099	0.10	264 99	-0.39	-0.22	-0.25	-1.207
33489.367	364.98	364.88	-0.02	0.10	-0.23	-1.287
330/8.500	709.16	1052.00	0.00	0.08	-0.21	-1.287
33866.570	1053.33	1053.29	-0.01	0.04	-0.18	-1.28/
34053.419	1397.59	1397.57	0.01	0.02	-0.18	-1.28/
34423.646	2086.07	2086.10	0.02	-0.03	-0.18	-1.287
34789.425	2774.61	2774.67	0.03	-0.06	-0.15	-1.287
35150.852	3463.24	3463.24	0.11	0.01	-0.13	-1.287
35508.098	4151.94	4151.88	0.18	0.06	-0.13	-1.287
35861.320	4840.70	4840.60	0.22	0.10	-0.09	-1.287
36210.681	5529.51	5529.53	0.08	-0.02	-0.07	-1.287
36556.144	6218.40	6218.39	0.08	0.01	-0.07	-1.287
36897.827	6907.34	6907.15	0.20	0.18	-0.07	-1.286
36556.216	6218.40	6218.51	-0.05	-0.11	-0.05	-1.286
36210.764	5529.51	5529.67	-0.07	-0.16	-0.05	-1.286
35861.412	4840.70	4840.71	0.10	-0.01	-0.02	-1.287
35508.209	4151.94	4151.99	0.07	-0.04	-0.02	-1.287
35150.949	3463.24	3463.32	0.03	-0.07	-0.02	-1.287
34789.512	2774.61	2774.68	0.01	-0.07	0.01	-1.287
34423.725	2086.07	2086.05	0.06	0.02	0.03	-1.287
34053.498	1397.59	1397.52	0.06	0.07	0.03	-1.287
33866.650	1053.33	1053.25	0.04	0.08	0.03	-1.287
33678.670	709.16	709.06	0.02	0.10	0.03	-1.287
33489.477	364.98	364.85	0.01	0.13	0.03	-1.286
33287.825	0.18	0.38	-0.37	-0.20	0.03	-1.286

Pressure Calibration Report STS/ODF Calibration Facility

Temperature Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 4907 CALIBRATION DATE: 24-Oct-2011 Mfg: SEABIRD Model: 03 Previous cal: 22-Apr-10 Calibration Tech: CAL

Calibration Standard: Mfg: ASL Model: F18 s/n: 245-5149 Temperature ITS-90 = $1/{g+h[ln(f0/f)]+i[ln2(f0/f)]+j[ln3(f0/f)]} - 273.15$ (°C) Temperature IPTS-68 = $1/{a+b[ln(f0/f)]+c[ln2(f0/f)]+d[ln3(f0/f)]} - 273.15$ (°C) T68 = 1.00024 * T90 (-2 to -35 Deg C)

SBE3	SPRT S	SBE3	SPRT-SBE3	SPRT-SBE3
Freq	ITS-90	ITS-90	Old_Coefs	New_Coefs
2934.4902	-1.5093	-1.5094	0.00004	0.00010
3036.0752	-0.0004	-0.0004	-0.00011	0.00001
3104.2949	0.9924	0.9925	-0.00029	-0.00014
3353.6748	4.4935	4.4936	-0.00021	-0.00006
3617.1816	7.9952	7.9951	0.00003	0.00010
3895.2129	11.4972	11.4972	0.00006	0.00000
4187.3604	14.9906	14.9906	0.00021	0.00001
4495.4922	18.4931	18.4932	0.00026	-0.00008
4818.9395	21.9930	21.9928	0.00061	0.00019
5158.5801	25.4951	25.4952	0.00029	-0.00014
5514.1113	28.9939	28.9939	0.00028	-0.00004
5886.5479	32.4958	32.4958	0.00011	0.00005

0.010 0.005 0.000 -0.005 -0.005 -0.010 -5.000 0.000 5.000 10.000 15.000 20.000 25.000 30.000 35.000

Previous_Coefs New_Coefs

Temperature Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 4138 CALIBRATION DATE: 28-Oct-2011 Mfg: SEABIRD Model: 03 Previous cal: 25-Nov-09 Calibration Tech: CAL

Calibration Standard: Mfg: ASL Model: F18 s/n: 245-5149 Temperature ITS-90 = $1/{g+h[ln(f0/f)]+i[ln2(f0/f)]+j[ln3(f0/f)]} - 273.15$ (°C) Temperature IPTS-68 = $1/{a+b[ln(f0/f)]+c[ln2(f0/f)]+d[ln3(f0/f)]} - 273.15$ (°C) T68 = $1.00024 \times T90$ (-2 to -35 Deg C)

SBE3	SPRT :	SBE3	SPRT-SBE3	SPRT-SBE3	
Freq	ITS-90	ITS-90	Old_Coefs	New_Coefs	
3158.9814	-1.5071	-1.5072	-0.00072	0.00012	
3339.5400	0.9932	0.9934	-0.00079	-0.00018	
3604.7871	4.4955	4.4955	-0.00046	-0.00003	
3884.6318	7.9954	7.9952	-0.00021	0.00019	
4179.9102	11.4978	11.4979	-0.00056	-0.00010	
4489.9121	14.9911	14.9911	-0.00061	-0.00002	
4817.4775	18.5022	18.5021	-0.00059	0.00014	
5159.3965	21.9925	21.9927	-0.00100	-0.00016	
5519.1230	25.4953	25.4952	-0.00083	0.00008	
5895.5020	28.9946	28.9946	-0.00093	-0.00004	
6289.4004	32.4961	32.4961	-0.00071	0.00002	
				Pr	evious_Coefs

SEA-BIRD ELECTRONICS, INC.

13431 NE 20th Street, Bellevue, Washington, 98005-2010 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 2112 CALIBRATION DATE: 14-Sep-11

SBE4 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Seimens/meter

GHIJ COEFFICIENTS

g = -1.01626223e+001	
h = 1.47247509e+000	
i = -3.14226663e - 003	
j = 3.03890595e-004	
CPcor = -9.5700e - 008	(nominal)
CTcor = 3.2500e-006	(nominal)

a = 1.95053704e-008 b = 1.46330826e+000 c = -1.01413802e+001 d = -7.52590029e-005 m = 7.8 CPcor = -9.5700e-008 (nominal)

ABCDM COEFFICIENTS

BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (kHz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
0.0000	0.0000	0.00000	2.63263	0.0000	0.00000
-1.0000	34.8474	2.80685	5.10958	2.80685	-0.00000
1.0000	34.8480	2.97842	5.22298	2.97842	0.00000
15.0000	34.8490	4.27520	6.01094	4.27521	0.00001
18.5000	34.8491	4.62225	6.20471	4.62223	-0.00002
29.0000	34.8463	5.70668	6.77421	5.70669	0.00002
32.5000	34.8376	6.07928	6.95898	6.07927	-0.00001

Conductivity = $(g + hf^{2} + if^{3} + jf^{4})/10(1 + \delta t + \epsilon p)$ Siemens/meter Conductivity = $(af^{m} + bf^{2} + c + dt)/[10(1 + \epsilon p)]$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ε = CPcor;

Residual = (instrument conductivity - bath conductivity) using g, h, i, j coefficients

Date, Slope Correction

SEA-BIRD ELECTRONICS, INC.

13431 NE 20th Street, Bellevue, Washington, 98005-2010 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 2569 CALIBRATION DATE: 14-Sep-11

SBE4 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Seimens/meter

GHIJ COEFFICIENTS

g	=	-1.0	482375	6e+001	
h	=	1.5	888117	2e+000	
i	=	-3.2	237250	4e-004	
j	=	1.2	025072	8e-004	
CF	,cc	or = ·	-9.570	0e-008	(nominal)
СІ	Cc	or =	3.250	0e-006	(nominal)

a = 7.15426801e-005 b = 1.58804947e+000 c = -1.04809602e+001 d = -8.25722294e-005 m = 4.1 CPcor = -9.5700e-008 (nominal)

ABCDM COEFFICIENTS

BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (kHz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
0.0000	0.0000	0.00000	2.56861	0.0000	0.00000
-1.0000	34.8474	2.80685	4.92378	2.80685	0.00000
1.0000	34.8480	2.97842	5.03202	2.97841	-0.00000
15.0000	34.8490	4.27520	5.78461	4.27521	0.00001
18.5000	34.8491	4.62225	5.96982	4.62223	-0.00002
29.0000	34.8463	5.70668	6.51451	5.70670	0.00002
32.5000	34.8376	6.07928	6.69132	6.07927	-0.00002

Conductivity = $(g + hf^{2} + if^{3} + jf^{4})/10(1 + \delta t + \epsilon p)$ Siemens/meter Conductivity = $(af^{m} + bf^{2} + c + dt)/[10(1 + \epsilon p)]$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ε = CPcor;

Residual = (instrument conductivity - bath conductivity) using g, h, i, j coefficients

SEA-BIRD ELECTRONICS, INC.

13431 NE 20th Street, Bellevue, Washington, 98005-2010 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0875 CALIBRATION DATE: 09-Sep-11p

SBE 43 OXYGEN CALIBRATION DATA

COEFFICIENTS	A = -3.3211e - 003	NOMINAL DYNAMIC COEFFICIENTS
Soc = 0.3947	B = 2.2067e - 004	D1 = 1.92634e-4 H1 = -3.30000e-2
Voffset = -0.5236	C = -3.8411e - 006	D2 = -4.64803e-2 $H2 = 5.00000e+3$
Tau20 = 1.70	E nominal = 0.036	H3 = 1.45000e+3

BATH OX	BATH TEMP	BATH SAL	INSTRUMENT	INSTRUMENT	RESIDUAL
(ml/l)	ITS-90	PSU	OUTPUT(VOLTS)	OXYGEN(ml/l)	(ml/l)
1.24	2.00	0.07	0.850	1.24	-0.00
1.24	6.00	0.07	0.891	1.24	0.00
1.25	12.00	0.07	0.951	1.25	0.00
1.26	20.00	0.06	1.030	1.26	0.00
1.26	26.00	0.06	1.090	1.26	0.00
1.26	30.00	0.06	1.134	1.27	0.00
4.15	2.00	0.08	1.615	4.14	-0.00
4.19	6.00	0.07	1.757	4.18	-0.00
4.19	12.00	0.07	1.951	4.18	-0.00
4.19	20.00	0.07	2.207	4.19	-0.00
4.19	26.00	0.06	2.401	4.19	-0.01
4.21	30.00	0.07	2.548	4.20	-0.00
6.75	30.00	0.07	3.775	6.75	0.00
6.77	26.00	0.06	3.563	6.78	0.00
6.81	20.00	0.07	3.261	6.81	0.00
6.84	12.00	0.07	2.860	6.85	0.00
6.92	6.00	0.07	2.563	6.92	-0.00
7.00	2.00	0.08	2.370	7.01	0.00

Oxygen (ml/l) = Soc * (V + Voffset) * $(1.0 + A * T + B * T^{2} + C * T^{3})$ * OxSol(T,S) * exp(E * P / K) V = voltage output from SBE43, T = temperature [deg C], S = salinity [PSU] K = temperature [deg K] OxSol(T,S) = oxygen saturation [ml/l], P = pressure [dbar], Residual = instrument oxygen - bath oxygen

Date, Delta Ox (ml/l)

Transmissometer Air Calibration M&B Calculator

CST-	491-DR Factory Cal Sh	neet Info	Air Cal Date	al Date 13 Nov. 2011 AVG Deck/Lab Readings		
Air Reading	4.864			4.712		
Water Reading	4.752			N/A		
Blocked Reading	0.061			0.059		
Air Temp.	18.885	18.880	18.875	18.920	18.970	18.971
M B	19.848 -1.171		Air Temp. Average 18.917			
CST-	491-DR Factory Cal Sh	neet Info	Air Cal Date 22 Nov. 2011 AVG Deck/Lab Readings			
Air Reading	4.864	4.698				
Water Reading	4.752			N/A		
Blocked Reading	0.061			0.059		
Air Temp.	21.576	21.595	21.609	21.619	21.633	21.632
M B	19.908 -1.175		Air Te	emp. Ave	rage	21.611
CST-	491-DR Factory Cal Sh	neet Info	Air Cal Date	AVG I	10 Dec. 20 Deck/Lab Ro)11 eadings
Air Reading	4.864	4.864		4.657		
Water Reading	4.752 0.061			N/A		
Blocked Reading			0.059			
Air Temp.	23.050	23.020	23.020	23.060	23.050	23.020
M B	20.086 -1.185		Air Te	emp. Ave	rage	23.037

Suggestion was made that perhaps the transmissometer was clamped to tightly - misaligning the light path. Loosened clamps and took an additional voltage reading - 4.657. Clamping was not the issue with the transmissometer.

Temperature Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 0035 CALIBRATION DATE: 27-Oct-2011 Mfg: SEABIRD Model: 35 Previous cal: 20-Jun-09 Calibration Tech: CAL

ITS-90_COEFFICIENTS a0 = 4.096000500E-3 a1 = -1.088470980E-3 a2 = 1.692763430E-4 a3 = -9.479887040E-6 a4 = 2.042562640E-7 Slope = 0.999999 Offset = -0.000014

Calibration Standard: Mfg: ASL Model: F18 s/n: 245-5149

Temperature ITS-90 = $1/{a0+a1[ln(f)]+a2[ln2(f)]+a3[ln3(f)]+a4[ln4(f))} - 273.15$ (°C)

					-
	SPRT-SBE35	SPRT-SBE35	SBE35 S	SPRT S	SBE35
	New_Coefs	Old_Coefs	ITS-90	ITS-90	Res
	-0.00009	-0.00010	-1.5072	-1.5073	-1.5072
	-0.00008	-0.00010	0.9932	0.9931	0.9932
	0.00012	0.00010	4.4942	4.4943	4.4942
	0.00002	0.0000	7.9954	7.9954	7.9954
	0.00012	0.00010	11.4977	11.4978	11.4977
	0.00003	0.0000	14.9924	14.9924	14.9924
	0.00003	0.0000	18.4965	18.4965	18.4965
	-0.00007	-0.00010	21.9926	21.9925	21.9926
	-0.00016	-0.00020	25.4950	25.4948	25.4950
	0.00004	0.0000	28.9955	28.9955	28.9955
	0.00004	0.0000	32.4958	32.4958	32.4958
evious_Coefs	Pr				

New_Coefs