## HYDROGRAPHIC CRUISE REPORT



# SAN DIEGO COASTAL EXPEDITION

*R/V* Melville 1209, 1217

Leg 1: 30 June - 10 July 2012

Leg 2: 8 December – 15 December 2012

## Contents

| INTRODUCTION                              | 3  |
|-------------------------------------------|----|
| PROGRAMS                                  | 3  |
| STANDARD PROCEDURES FOR HYDROGRAPHIC DATA | 4  |
| TABULATED HYDROGRAPHIC DATA               | 6  |
| LITERATURE CITED                          | 7  |
| TABLES                                    | 8  |
| FIGURES                                   | 12 |

### INTRODUCTION

The data presented in this report were collected during cruises MV1209 and MV1217 of the San Diego Coastal Expedition (SDCE) program aboard the R/V Melville of Scripps Institution of Oceanography, University of California San Diego. The SDCE program was organized by doctoral students at Scripps to study the role of oxygen and carbonate chemistry in structuring benthic communities along the San Diego margin and slope, and to explore for methane seeps. Cruise time was funded by the UC Ship Funds program, an award that pays for sea time aboard Scripps research vessels to provide hands-on training for graduate and undergraduate students, postdoctoral researchers and early career faculty. Graduate student and postdoctoral researcher participants ranged in disciplines from biological oceanography and marine chemistry to physical oceanography. Any questions regarding datasets and data products can be directed to Christina Frieder, ctanner@ucsd.edu or christina.ann.frieder@gmail.com.

The main purposes of this report are to provide details on collection and processing of the hydrographic dataset, and to provide bottom water environmental data collected from the CTD-Rosette at the multicore stations to be used by all multicore users. The hydrographic dataset is unique in that it has extensive spatial and depth coverage of oxygen and carbonate chemistry conditions along and offshore of the San Diego margin.

### PROGRAMS

Several programs produced data on this cruise series, and associated products from each of these programs are at varying stages of completion. These programs include:

1) *Hydrographic Surveys*: CTD and Rosette casts were conducted at multiple stations along three main lines during both cruises: Line D, Line L and Line P (Table 1 & 2). Line D extended southwest from the coastline of Del Mar, CA and was designed to correspond with inner stations of CalCOFI's Line 93. Line L extended west from Bird Rock, CA. Line P extended west from Point Loma, CA. Hydrographic data were collected with CTD and Rosette casts from the surface to near bottom depths. Standard procedures for collection of data are provided below, and data is publicly available. (Y. Takeshita ytakeshi@ucsd.edu)

2) *ADCP*: Continuous profiles of ocean currents and acoustic backscatter between 40 and 760 meters deep were measured along the ship track from a hull-mounted 75 kHz Acoustic Doppler Current Profiler (ADCP). Both broad-band and narrow-band ADCP data were averaged over 15-minute or 1-hour intervals. Thirty 25-meter depth bins were recorded. (S. Nam; sunam@ucsd.edu)

3) *CHIRP and Multibeam Surveys*: Multibeam and backscatter data were collected throughout the entire MV1209 cruise using the hull mounted Kongsberg EM122 system at 12 kHz (Fig. 1). CHIRP data were collected at targeted sites using the hull mounted Knudsen sub-bottom echosounder at both 3.5 kHZ and 12 kHz. (J. Maloney; jmmalone@ucsd.edu)

4) *Multicoring:* Sediment samples were collected at six stations along the margin and slope with a deep-sea multicorer with eight sample tubes 10 cm x 70 cm (Table 3). At least three drops were made at each station and tubes were divvied among multiple projects. Sediments were vertically-fractioned and processed with varying protocols depending on fate. The variety of projects included meiofauna and macrofauna community studies, protistan and microbial studies, and bulk sediment and porewater analyses. (C. Frieder; ctanner@ucsd.edu)

5) *Trawling and ROV Surveys*: Megafauna were sampled during both cruises with an otter trawl and observational data was gathered by ROV survey in December. Trawls were conducted at 100 and 300 m depths off Del Mar and 100, 300, and 400 m depths off La Jolla during both cruises. In addition, trawls were conducted at 100, 300, and 400 m depths off of Point Loma and at 400 m depth off Del Mar on MV1217. Recovered specimens were identified to lowest taxonomic level possible, enumerated, and a subset preserved in ethanol and formalin and will be made available to the Scripps Benthic Collections. ROV surveys (100-400 m depth) were conducted off of Del Mar and La Jolla on MV1217 and at Del Mar at 400 m depth on MV1209. (M. Navarro; monavarr@ucsd.edu)

6) *Seep Surveys*: Surveys of the Del Mar methane seep were conducted with the ROV and sediment collections were made with multicorer. Press release regarding identification of a methane seep off San Diego is available at https://scripps.ucsd.edu/news/1779. (B. Grupe; bgrupe@ucsd.edu)

## STANDARD PROCEDURES FOR HYDROGRAPHIC DATA

### CTD/Rosette Cast Data

A Sea-Bird Electronics, Inc., Conductivity-Temperature-Depth (CTD) instrument (SBE9) and dissolved oxygen sensor (Sea-Bird Electronics Sensor SBE43) with a rosette was deployed at each station on these cruises. The rosette was equipped with 24 ten-liter plastic (PVC) bottles. Each CTD/rosette cast usually sampled every 50 - 100 m with increased resolution in the upper 200 m of the water column. The sample spacing was designed to characterize near-bottom conditions, the structure of the OMZ, and the upper thermocline. Discrete samples were analyzed for oxygen, pH and total dissolved inorganic carbon (C<sub>T</sub>), and salinity.

Salinity samples were collected from a subset of bottles and analyzed at the Ocean Data Facility using a Guildline Autosal 8400 salinometer. Samples were drawn into 200 ml borosilicate bottles that were rinsed three times with sample prior to filling. The salinometer was standardized before and after each group of samples with standardized seawater. Periodic checks on the conductivity of the standardized seawater were made by comparison with IAPSO Standard Seawater. The CTD-salinity values were corrected by applying a linear function based on discrete samples (Fig. 2). The offset (intercept) and gain (slope) are reported for CTD-salinity in Table 4.

Discrete samples for dissolved oxygen were collected and analyzed following standard procedures (Dickson 1996; Dickson et al. 2007). The endpoint was determined photometrically (Bryan 1976) using a custom titration cell described in Martz et al. 2011. A Milligat low flow M5 pump was used for titrant delivery. The concentration of the thiosulfate solution was determined directly prior and after each cruise using KIO<sub>3</sub> standard solutions prepared in house (Fisher, lot 105595); no detectable drift in titrant concentration was observed for either cruise. Duplicate samples were taken from two niskin bottles fired simultaneously at the same depth. Precision of the measurements was  $\pm 0.75$  and  $\pm 0.31 \mu mol/kg$  for cruise MV1209 and MV1217, respectively. The accuracy of the measurements was estimated to be  $\pm 0.5\%$  based on Emerson et al. (1999) since KIO<sub>3</sub> standards were not recrystallized. The CTD-oxygen values were corrected by applying a linear function based on discrete samples (Fig. 2). The offset (intercept) and gain (slope) are reported for CTD-oxygen in Table 4.

Samples for  $C_T$  and pH were collected in 150 or 250 ml pyrex serum bottles (13 mm neck), and filled following standard procedures (Dickson et al., 2007), with a slight modification. The bottle was filled so no head space remained, and a gray butyl stopper was inserted to prevent gas exchange. Samples were typically analyzed within 4 hours of collection. Duplicate samples were taken from two niskin bottles that were simultaneously fired at the same depth for every cast.

 $C_T$  samples were analyzed using a system based on the design of O'Sullivan and Millero (1998). Briefly, a seawater sample is acidified, converting all  $C_T$  to  $CO_{2(g)}$ . The  $CO_{2(g)}$  is then is extracted from the sample in a nitrogen gas stream and detected using a LiCOR 7000 NDIR gas analyzer. A Kloehn V6 syringe pump (5 mL syringe) was used to deliver 1 mL of sample to a custom stripping chamber, and subsequently 100  $\mu$ L of 5% phosphoric acid was added. The acidified sample was bubbled with  $N_{2(g)}$ , and the resultant gas phase (now  $N_{2(g)} + CO_{2(g)}$ ) was delivered to the LiCOR; the flow rate of the carrier gas was controlled using a mass flow controller. The  $CO_{2(g)}$  stripped from the water sample results in a peak in the output of the LiCOR, and the  $C_T$  is proportional to the integral of this peak.

The C<sub>T</sub> measurements were calibrated using Certified Reference Materials (CRMs), provided by the Dickson Lab at SIO (Batch 117 for MV1209, and a prototype batch of a high-CO<sub>2</sub> "CRM" (C<sub>T</sub> = 2141.9  $\mu$ mol/kg) for MV1217) by applying a gain correction (slope), and assuming an offset of zero (intercept). The CRMs were stored in CO<sub>2</sub> impermeable bags (3L Scholle DuraShield®), and were measured frequently throughout the cruise. Every day, a fresh bottle of CRM was opened to verify the stability of the CRM in the bag. No drift was observed. The gain calibration factor was interpolated to each sample. Precision of the measurements was estimated from duplicate samples for MV1209 and MV1217, and is ± 2.8  $\mu$ mol/kg (n = 32) and ± 2.2  $\mu$ mol/kg (n = 35), respectively. The accuracy of the measurements is estimated to be ± 3.5  $\mu$ mol/kg.

pH samples were analyzed spectrophotometrically (Dickson et al. 2007; Clayton and Byrne, 1993), using an automated system described in Carter et al. 2013, except for the first 11 casts on MV1217 where measurements were made manually. For all measurements, a temperature controlled 10-cm cell was used. The temperature of the solution inside of the cell was not measured, but was assumed to be 20°C. Every sample was immersed in a temperature controlled water bath at 20°C for at least 25 minutes before analysis. The pH of the indicator dye (m-cresol purple, Acros, lot A0264321) solution (2 mM) was adjusted to be ~7.7 by adding a small amount of NaOH. Measurements of certified Tris buffer in artificial seawater (provided by the Dickson Lab) were used to apply an offset calibration to the pH measurements (0.035 and 0.025 pH units for MV1209 and MV1217, respectively). Precision of the measurements was estimated from duplicate samples for MV1209 and MV1217 to be  $\pm$  0.001 (n = 31) and  $\pm$  0.002 (n = 55), respectively. The accuracy of the measurements was estimated to be  $\pm$  0.02.

Pressures and temperatures assigned to the water sample data were derived from the CTD signals recorded just prior to the bottle trip. CTD temperatures reported with the bottle data have been rounded to the nearest hundredth of a degree Celsius.

Derived carbonate parameters are not included in the published dataset, but are available upon request. Nutrients were not measured on these cruises, however have been estimated through empirical relationships from NACP 2007 data based on the method described in Alin et al. (2012).

#### TABULATED HYDROGRAPHIC DATA

### CTD/Rosette Cast Data

Data are provided as individual text files per cast. The time reported is the Coordinated Universal Time (UTC) at the beginning of the downcast. The sample files are numbered consecutively as they were conducted during the cruise. Header information within each file

reports cruise number, station number, station name, cast number, time, latitude and longitude, and bottom depth. Bottom depths were determined acoustically. Only data for downcasts are included and are binned at 1-m intervals.

Discrete data for salinity, dissolved oxygen,  $C_T$  and pH are provided as individual text files per cruise formatted for Ocean Data View (ODV). Missing value indicator is -999. Flags are reported for CTD pressure, CTD salinity, CTD temperature, CTD oxygen, bottle pH, temperature of pH measurement,  $C_T$ , bottle oxygen, and bottle salinity. Flag numbers represent 1= good data, 2= probably good, 3 = probably bad, 4 = bad, 6 = averaged data, 8 = lost sample, 9 = not sampled. All pH measurements are reported at the measurement temperature (20 °C) and pressure of 0 dbar.

### LITERATURE CITED

- Alin SR, Feely RA, Dickson AG, Hernández-Ayón JM, Juranek LW, Ohman MD, Goericke R (2012) Robust empirical relationships for estimating the carbonate system in the southern California Current System and application to CalCOFI hydrographic cruise data (2005-2011). J. Geophys. Res., 117, C05033.
- Bryan JR, Riley JP, Williams PJL (1976) A winkler procedure for making precise measurements of oxygen concentration for productivity and related studies. *J. Exp. Mar. Biol. Ecol.*, **21**, 191-197.
- Carter BR, Radich JA, Doyle HL, Dickson AG (2013) An automated system for spectrophotometric seawater pH measurements. *Limnol. Oceanogr. Methods*, **11**, 16–27.
- Clayton TD, Byrne RH (1993) Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. *Deep-Sea Res.*, **40**, 2115–2129.
- Dickson AG (1996) Determination of dissolved oxygen in sea water by Winkler titration. In: *WOCE Operations Manual, Volume 3: The Observational Programme, Section 3.1: WOCE Hydrographic Programme. Part 3.1.3: WHP Operations and Methods* (eds: World Ocean Circulation Experiment), pp 1-13. Woods Hole, Massachusetts, USA.
- Dickson AG, Sabine CL, Christian JR (2007) *Guide to best practices for ocean CO*<sub>2</sub> *measurements*. Sidney, British Columbia, PICES Special Publication 3.
- Emerson S, Stump C, Wilbur D, Quay P (1999) Accurate measurement of O2, N2, and Ar gases in water and the solubility of N2. *Mar. Chem.*, 64, 337-347.
- O'Sullivan DW, Millero FJ (1998) Continual measurement of the total inorganic carbon in surface seawater. *Mar. Chem.*, **60**, 75-83.

## TABLES

| Station | Station | Cast |                |          |           | Bottom    |
|---------|---------|------|----------------|----------|-----------|-----------|
| No.     | Name    | No.  | Time (GMT)     | Latitude | Longitude | Depth (m) |
| 1       | 'D4'    | 1    | 7/1/2012 14:40 | 32,9391  | -117.3449 | 390       |
| 2       | 'D3'    | 1    | 7/1/2012 19:15 | 32.9504  | -117.3269 | 350       |
| 3       | 'D2'    | 1    | 7/1/2012 21:14 | 32.9445  | -117.3079 | 67        |
| 4       | 'D1'    | 1    | 7/2/2012 3:22  | 32.9674  | -117.2928 | 32        |
| 5       | 'D5'    | 1    | 7/2/2012 4:30  | 32.9291  | -117.3649 | 480       |
| 6       | 'D6'    | 1    | 7/2/2012 6:39  | 32.9097  | -117.4059 | 644       |
| 7       | 'L9'    | 1    | 7/2/2012 9:44  | 32.8095  | -117.5019 | 800       |
| 8       | 'D7'    | 1    | 7/2/2012 15:19 | 32.8500  | -117.5318 | 850       |
| 9       | 'L8'    | 1    | 7/3/2012 18:17 | 32.8100  | -117.4658 | 705       |
| 10      | 'L7'    | 1    | 7/3/2012 20:53 | 32.8100  | -117.4166 | 523       |
| 11      | 'L2'    | 1    | 7/4/2012 18:52 | 32.8098  | -117.2985 | 25        |
| 12      | 'L3'    | 1    | 7/4/2012 19:26 | 32.8107  | -117.3099 | 40        |
| 13      | 'L4'    | 1    | 7/4/2012 20:05 | 32.8099  | -117.3242 | 68        |
| 14      | 'L5'    | 1    | 7/5/2012 15:36 | 32.8100  | -117.3498 | 92        |
| 15      | 'L6'    | 1    | 7/5/2012 16:56 | 32.8101  | -117.3758 | 232       |
| 16      | 'L6b'   | 1    | 7/5/2012 18:37 | 32.8101  | -117.3849 | 300       |
| 17      | 'D9'    | 1    | 7/5/2012 22:40 | 32.7021  | -117.8600 | 650       |
| 18      | 'D8'    | 1    | 7/6/2012 1:26  | 32.7789  | -117.6783 | 1050      |
| 19      | 'SDT'   | 1    | 7/6/2012 15:30 | 32.6333  | -117.4999 | 1050      |
| 20      | 'SDT2'  | 1    | 7/9/2012 0:00  | 32.6905  | -117.5307 | 1115      |
| 21      | 'P10'   | 1    | 7/7/2012 2:38  | 32.6910  | -117.6129 | 1140      |
| 22      | 'SDT9'  | 1    | 7/7/2012 5:02  | 32.6898  | -117.6809 | 1152      |
| 23      | 'D8b'   | 1    | 7/7/2012 7:00  | 32.7305  | -117.7818 | 275       |
| 24      | 'SDT8'  | 1    | 7/7/2012 8:40  | 32.7552  | -117.7163 | 1104      |
| 25      | 'P5'    | 1    | 7/7/2012 12:20 | 32.6900  | -117.3369 | 130       |
| 26      | 'P4'    | 1    | 7/7/2012 13:25 | 32.6896  | -117.3162 | 84        |
| 27      | 'P3'    | 1    | 7/7/2012 14:18 | 32.6896  | -117.2963 | 69        |
| 28      | 'P2'    | 1    | 7/7/2012 15:12 | 32.6901  | -117.2794 | 52        |
| 29      | 'P1'    | 1    | 7/7/2012 15:53 | 32.6899  | -117.2721 | 30        |
| 30      | 'L6b'   | 2    | 7/8/2012 15:14 | 32.8100  | -117.3847 | 300       |
| 31      | 'DM'    | 1    | 7/8/2012 21:14 | 32.9286  | -117.3168 | 115       |
| 32      | 'D8'    | 2    | 7/9/2012 0:13  | 32.7788  | -117.6782 | 1055      |
| 33      | 'D8'    | 3    | 7/9/2012 4:00  | 32.7788  | -117.6827 | 1050      |
| 34      | 'P8'    | 1    | 7/9/2012 15:45 | 32.6900  | -117.4454 | 502       |
| 35      | 'P7'    | 1    | 7/9/2012 17:55 | 32.6901  | -117.3933 | 358       |
| 36      | 'P6'    | 1    | 7/9/2012 19:44 | 32.6900  | -117.3678 | 268       |
| 37      | 'SDT6b' | 1    | 7/9/2012 23:50 | 32.9033  | -117.7825 | 1030      |
| 38      | 'SDT4'  | 1    | 7/10/2012 8:09 | 32.8095  | -117.6240 | 985       |

Table 1. MV1209 (July 2012) CTD/Rosette station numbers, names, cast number, time, location and bottom depth.

Table 2. MV1217 (December 2012) CTD/Rosette station numbers, names, cast number, time, location and bottom depth.

| Station | Station | Cast |                  |          |           | Bottom    |
|---------|---------|------|------------------|----------|-----------|-----------|
| No.     | Name    | No.  | Date             | Latitude | Longitude | Depth (m) |
| 1       | 'SDT2'  | 1    | 12/8/2012 20:43  | 32.6901  | -117.5306 | 1102      |
| 2       | 'SDT4'  | 1    | 12/8/2012 23:47  | 32.8093  | -117.6240 | 978       |
| 3       | 'L7'    | 1    | 12/9/2012 5:22   | 32.8100  | -117.4166 | 522       |
| 4       | 'D1'    | 1    | 12/10/2012 2:22  | 32.9675  | -117.2930 | 35        |
| 5       | 'D2b'   | 1    | 12/10/2012 3:26  | 32.9597  | -117.3099 | 74        |
| 6       | 'DM'    | 1    | 12/10/2012 4:42  | 32.9275  | -117.3169 | 110       |
| 7       | 'D3'    | 1    | 12/10/2012 6:10  | 32.9504  | -117.3269 | 346       |
| 8       | 'D5'    | 1    | 12/10/2012 7:49  | 32.9291  | -117.3650 | 475       |
| 9       | 'D6'    | 1    | 12/10/2012 9:43  | 32.9097  | -117.4059 | 640       |
| 10      | 'DL300' | 1    | 12/10/2012 12:04 | 32.8628  | -117.3607 | 282       |
| 11      | 'DL100' | 1    | 12/10/2012 13:09 | 32.8626  | -117.3340 | 99        |
| 12      | 'L6b'   | 1    | 12/11/2012 8:42  | 32.8101  | -117.3848 | 299       |
| 13      | 'L5'    | 1    | 12/11/2012 10:10 | 32.8099  | -117.3498 | 90        |
| 14      | 'L4'    | 1    | 12/11/2012 11:08 | 32.8099  | -117.3242 | 59        |
| 15      | 'L2'    | 1    | 12/11/2012 11:51 | 32.8098  | -117.2985 | 24        |
| 16      | 'SDT6b' | 1    | 12/11/2012 15:20 | 32.9033  | -117.7825 | 1023      |
| 17      | 'SDT8'  | 1    | 12/12/2012 4:42  | 32.7550  | -117.7163 | 1093      |
| 18      | 'D7'    | 1    | 12/12/2012 7:14  | 32.8494  | -117.5320 | 841       |
| 19      | 'L8'    | 1    | 12/13/2012 5:59  | 32.8100  | -117.4659 | 695       |
| 20      | 'SDT9'  | 1    | 12/13/2012 8:45  | 32.6898  | -117.6806 | 1141      |
| 21      | 'D9'    | 1    | 12/13/2012 11:02 | 32.7025  | -117.8599 | 643       |
| 22      | 'SDT'   | 1    | 12/14/2012 4:42  | 32.6333  | -117.5000 | 1170      |
| 23      | 'P8'    | 1    | 12/14/2012 11:24 | 32.6900  | -117.4454 | 481       |
| 24      | 'L9'    | 1    | 12/15/2012 1:15  | 32.8095  | -117.5019 | 781       |
| 25      | 'P4'    | 1    | 12/15/2012 8:21  | 32.6896  | -117.3162 | 85        |
| 26      | 'P2b'   | 1    | 12/15/2012 9:11  | 32.8095  | -117.5019 | 60        |
| 27      | 'P7'    | 1    | 12/15/2012 11:07 | 32.6901  | -117.3933 | 350       |
| 28      | 'P9b'   | 1    | 12/15/2012 15:15 | 32.6932  | -117.5721 | 1100      |
| 29      | 'P10'   | 1    | 12/15/2012 16:31 | 32.6916  | -117.6130 | 1100      |

Table 3. Multicore site locations and depth and measurements of temperature, salinity, dissolved oxygen (both  $\mu$ mol/kg and ml/l), pH (total scale; in-situ temperature and pressure), and total dissolved inorganic carbon (DIC). Alkalinity, pCO<sub>2</sub>, saturation state of aragone and calcite ( $\Omega_{Ar}$  and  $\Omega_{Ca}$ , respectively) were calculated from DIC and pH at in-situ temperature and pressure using CO2SYS.

| Cruise | CTD<br>Stn. | Depth<br>(m) | Latitude<br>(N) | Longitude<br>(W) | Temp<br>(°C) | Salinity | [O <sub>2</sub> ]<br>(µmol/kg) | DO<br>(ml/l) | $pH_{\text{T}}$ | DIC<br>(µmol/kg) | Alkalinity<br>(µmol/kg) | pCO <sub>2</sub><br>(uatm) | ΩAr   | ΩCa   |
|--------|-------------|--------------|-----------------|------------------|--------------|----------|--------------------------------|--------------|-----------------|------------------|-------------------------|----------------------------|-------|-------|
| MV1209 | L6b         | 300          | 32 48.601       | 117 28.086       | 9.2597       | 34.297   | 38.1                           | 0.83         | 7.593           | 2260.6           | 2283.7                  | 1220.1                     | 0.714 | 1.121 |
| MV1209 | L7          | 528          | 32 48.602       | 117 24.995       | 6.8180       | 34.306   | 17.4                           | 0.38         | 7.551           | 2304.7           | 2308.2                  | 1313.7                     | 0.583 | 0.916 |
| MV1209 | L8          | 700          | 32 48.598       | 117 27.058       | 5.7354       | 34.360   | 10.6                           | 0.23         | 7.545           | 2326.4           | 2326.2                  | 1306.9                     | 0.544 | 0.855 |
| MV1209 | L9          | 806          | 32 48.571       | 117 30.416       | 5.0896       | 34.407   | 11.0                           | 0.24         | 7.552           | 2342.2           | 2342.7                  | 1274.2                     | 0.537 | 0.843 |
| MV1209 | SDT6b       | 1040         | 32 54.110       | 117 46.964       | 4.0297       | 34.479   | 20.3                           | 0.44         | 7.583           | 2357.0           | 2362.3                  | 1129.0                     | 0.550 | 0.862 |
| MV1209 | SDT         | 1175         | 32 38.000       | 117 29.993       | 3.6724       | 34.468   | 31.1                           | 0.67         | 7.596           | 2372.6           | 2385.9                  | 1105.1                     | 0.541 | 0.847 |
| MV1217 | L6b         | 300          | 32 48.601       | 117 28.086       | 8.6137       | 34.145   | 70.9                           | 1.54         | 7.654           | 2230.6           | 2268.5                  | 1045.1                     | 0.789 | 1.241 |
| MV1217 | L7          | 528          | 32 48.602       | 117 24.995       | 6.6217       | 34.313   | 16.2                           | 0.35         | 7.566           | 2303.9           | 2311.4                  | 1265.3                     | 0.598 | 0.940 |
| MV1217 | L8          | 700          | 32 48.598       | 117 27.058       | 5.8975       | 34.348   | 11.9                           | 0.26         | 7.555           | 2325.0           | 2326.7                  | 1285.3                     | 0.563 | 0.884 |
| MV1217 | L9          | 806          | 32 48.571       | 117 30.416       | 5.0491       | 34.405   | 13.5                           | 0.29         | 7.561           | 2342.7           | 2345.8                  | 1250.2                     | 0.547 | 0.859 |
| MV1217 | SDT6b       | 1040         | 32 54.110       | 117 46.964       | 4.1685       | 34.476   | 20.3                           | 0.44         | 7.581           | 2361.0           | 2369.3                  | 1164.2                     | 0.542 | 0.850 |
| MV1217 | SDT         | 1175         | 32 38.000       | 117 29.993       | 3.8231       | 34.501   | 26.6                           | 0.58         | 7.591           | 2360.0           | 2371.7                  | 1121.9                     | 0.543 | 0.850 |

| Cruise     | Parameter | Correction                                                                         |
|------------|-----------|------------------------------------------------------------------------------------|
| MV1200     | Salinity  | $sal_{corr} = 0.6146 \times sal_{CTD} + 0.9824$                                    |
| IVI V 1209 | DO        | $\mathrm{DO}_{\mathrm{corr}} = 0.335 \times \mathrm{DO}_{\mathrm{CTD}} + 1.0148$   |
| MV1017     | Salinity  | $sal_{corr} = 0.1916 \times sal_{CTD} + 0.9945$                                    |
| IVI V 1217 | DO        | $\mathrm{DO}_{\mathrm{corr}} = \ 1.890 \times \mathrm{DO}_{\mathrm{CTD}} + 1.0660$ |

Table 4. Correction factors that have been applied to CTD data for dissolved oxygen (DO;  $\mu$ mol kg<sup>-1</sup>) and salinity.

#### FIGURES

- Figure 1. Bathymetric data collected during MV1209.
- Figure 2. Map of CTD stations, D-line, L-line and P-line from MV1209 and MV1217.
- Figure 3. CTD salinity and oxygen correction plots.
- Figure 4. Alongshore current structure during MV1209.
- Figure 5. Alongshore current structure during MV1217.
- Figure 6. Cross-sections of potential density during MV1209.
- Figure 7. Cross-sections of potential density during MV1217.
- Figure 8. Cross-sections of dissolved oxygen during MV1209.
- Figure 9. Cross-sections of dissolved oxygen during MV1217.
- Figure 10. Cross-sections of pH during MV1209.
- Figure 11. Cross-sections of pH during MV1217.
- Figure 12. Cross-sections of pCO<sub>2</sub> during MV1209.
- Figure 13. Cross-sections of pCO<sub>2</sub> during MV1217.
- Figure 14. Cross-sections of  $\Omega_{aragonite}$  during MV1209.
- Figure 15. Cross-sections of  $\Omega_{aragonite}$  during MV1217.



Figure1. Bathymetric data collected during MV1209.



Figure 2. Map of CTD stations, D-line, L-line and P-line from MV1209 and MV1217.

Figure 3. CTD salinity correction plots for (a) MV1209 and (b) MV1217. CTD dissolved oxygen correction plots for (c) MV1209 and (d) MV1217. The RMSE of the linear correction for oxygen during MV1209 and MV1217 was 2.6 (n = 246) and 2.2 (n = 327)  $\mu$ mol/kg, respectively.





Figure 4. Alongshore current structure (positive is poleward) during MV1209 (July 2012).



Figure 5. Alongshore current structure (positive is poleward) during MV1217 (December 2012).



Figure 6. Cross-sections of potential density during MV1209 (July 2012).



Figure 7. Cross-sections of potential density during MV1217 (December 2012).



Figure 8. Cross-sections of dissolved oxygen ( $\mu$ mol/kg) during MV1209 (July 2012).



Figure 9. Cross-sections of dissolved oxygen (µmol/kg) during MV1217 (December 2012).



Figure 10. Cross-sections of pH (total scale; in-situ) during MV1209 (July 2012).



Figure 11. Cross-sections of pH (total scale; in-situ) during MV1217 (December 2012).



Figure 12. Cross-sections of pCO<sub>2</sub> (µatm; in-situ) during MV1209 (July 2012).



Figure 13. Cross-sections of pCO<sub>2</sub> (µatm; in-situ) during MV1217 (December 2012).



Figure 14. Cross-sections of  $\Omega$ (aragonite; in-situ) during MV1209 (July 2012).



Figure 15. Cross-sections of  $\Omega$ (aragonite; in-situ) during MV1217 (December 2012).